The development of bacteriophages (phages) as active pharmaceutical ingredients for the treatment of patients is on its way and regulatory agencies are calling for reliable methods to assess phage potency. As the number of phage banks is increasing, so is the number of phages that need to be tested to identify therapeutic candidates. Currently, assessment of phage potency on a semi-solid medium to observe plaque-forming units is unavoidable and proves to be labor intensive when considering dozens of phage candidates. Here, we present a method based on automated pipetting and phage drop-off performed by a liquid-handling robot, allowing high-throughput testing and phage potency determination (based on phage titer and efficiency of plaquing). Ten phages were tested, individually and assembled into one cocktail, against 126 strains. This automated method was compared to the reference one (manual assay) and validated in terms of reproducibility and concordance (ratio of results according to the Bland and Altman method: 0.99; Lin's concordance correlation coefficient: 0.86). We found that coefficients of variation were lower with automated pipetting (mean CV: 13.3% vs. 24.5%). Beyond speeding up the process of phage screening, this method could be used to standardize phage potency evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10886619 | PMC |
http://dx.doi.org/10.3390/biomedicines12020466 | DOI Listing |
mBio
December 2024
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
Bacteriophages, known for their ability to kill bacteria, are hampered in their effectiveness because bacteria are able to rapidly develop resistance, thereby posing a significant challenge for the efficacy of phage therapy. The impact of evolutionary trajectories on the long-term success of phage therapy remains largely unclear. Herein, we conducted evolutionary experiments, genomic analysis, and CRISPR-mediated gene editing, to illustrate the evolutionary trajectory occurring between phages and their hosts.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Heidelberg 69120, Germany.
Deep mutational scanning is a powerful method for exploring the mutational fitness landscape of proteins. Its adaptation to anti-CRISPR proteins, which are natural CRISPR-Cas inhibitors and key players in the co-evolution of microbes and phages, facilitates their characterization and optimization. Here, we developed a robust anti-CRISPR deep mutational scanning pipeline in Escherichia coli that combines synthetic gene circuits based on CRISPR interference with flow cytometry coupled sequencing and mathematical modeling.
View Article and Find Full Text PDFJ Clin Med
October 2024
Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
() poses a significant threat to individuals with cystic fibrosis (CF), as this bacterium is highly adaptable and resistant to antibiotics. While early-stage infections can often be eradicated with aggressive antibiotic therapy, chronic infections are nearly impossible to eliminate and require treatments that focus on long-term bacterial suppression. Without such suppression, these persistent infections can severely damage the lungs, leading to serious complications and a reduced life expectancy for CF patients.
View Article and Find Full Text PDFbioRxiv
October 2024
University of Minnesota, Twin Cities. Minneapolis, MN 55409.
Int J Biol Macromol
November 2024
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!