A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel Brain-Penetrant, Small-Molecule Tubulin Destabilizers for the Treatment of Glioblastoma. | LitMetric

Glioblastoma (GB) is the most lethal brain cancer in adults, with a 5-year survival rate of 5%. The standard of care for GB includes maximally safe surgical resection, radiation, and temozolomide (TMZ) therapy, but tumor recurrence is inevitable in most GB patients. Here, we describe the development of a blood-brain barrier (BBB)-penetrant tubulin destabilizer, RGN3067, for the treatment of GB. RGN3067 shows good oral bioavailability and achieves high concentrations in rodent brains after oral dosing (C of 7807 ng/mL (20 μM), T at 2 h). RGN3067 binds the colchicine binding site of tubulin and inhibits tubulin polymerization. The compound also suppresses the proliferation of the GB cell lines U87 and LN-18, with ICs of 117 and 560 nM, respectively. In four patient-derived GB cell lines, the IC values for RGN3067 range from 148 to 616 nM. Finally, in a patient-derived xenograft (PDX) mouse model, RGN3067 reduces the rate of tumor growth compared to the control. Collectively, we show that RGN3067 is a BBB-penetrant small molecule that shows in vitro and in vivo efficacy and that its design addresses many of the physicochemical properties that prevent the use of microtubule destabilizers as treatments for GB and other brain cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10887108PMC
http://dx.doi.org/10.3390/biomedicines12020406DOI Listing

Publication Analysis

Top Keywords

cell lines
8
rgn3067
6
novel brain-penetrant
4
brain-penetrant small-molecule
4
tubulin
4
small-molecule tubulin
4
tubulin destabilizers
4
destabilizers treatment
4
treatment glioblastoma
4
glioblastoma glioblastoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!