A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the Osteogenic Potential of Zinc-Doped Magnesium Phosphate Cement (ZMPC): A Novel Material for Orthopedic Bone Defect Repair. | LitMetric

In orthopedics, the repair of bone defects remains challenging. In previous research reports, magnesium phosphate cements (MPCs) were widely used because of their excellent mechanical properties, which have been widely used in the field of orthopedic medicine. We built a new k-struvite (MPC) cement obtained from zinc oxide (ZnO) and assessed its osteogenic properties. Zinc-doped magnesium phosphate cement (ZMPC) is a novel material with good biocompatibility and degradability. This article summarizes the preparation method, physicochemical properties, and biological properties of ZMPC through research on this material. The results show that ZMPC has the same strength and toughness (25.3 ± 1.73 MPa to 20.18 ± 2.11 MPa), that meet the requirements of bone repair. Furthermore, the material can gradually degrade (12.27% ± 1.11% in 28 days) and promote osteogenic differentiation (relative protein expression level increased 2-3 times) of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. In addition, in vivo confirmation revealed increased bone regeneration in a rat calvarial defect model compared with MPC alone. Therefore, ZMPC has broad application prospects and is expected to be an important repair material in the field of orthopedic medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10886858PMC
http://dx.doi.org/10.3390/biomedicines12020344DOI Listing

Publication Analysis

Top Keywords

magnesium phosphate
12
zinc-doped magnesium
8
phosphate cement
8
cement zmpc
8
zmpc novel
8
novel material
8
field orthopedic
8
orthopedic medicine
8
repair material
8
zmpc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!