Halofantrine Hydrochloride Acts as an Antioxidant Ability Inhibitor That Enhances Oxidative Stress Damage to .

Antioxidants (Basel)

Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.

Published: February 2024

, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, demonstrates its capability to endure oxidative stress through the utilization of antioxidant enzymes. Therefore, the enhancement of oxidative stress in innate immune cells against presents a promising therapeutic approach for the treatment of invasive candidiasis. In this study, we conducted a comprehensive analysis of a library of drugs approved by the Food and Drug Administration (FDA). We discovered that halofantrine hydrochloride (HAL) can augment the antifungal properties of oxidative damage agents (plumbagin, menadione, and HO) by suppressing the response of to reactive oxygen species (ROS). Furthermore, our investigation revealed that the inhibitory mechanism of HAL on the oxidative response is dependent on Cap1. In addition, the antifungal activity of HAL has been observed in the infection model. These findings provide evidence that targeting the oxidative stress response of and augmenting the fungicidal capacity of oxidative damage agents hold promise as effective antifungal strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10886025PMC
http://dx.doi.org/10.3390/antiox13020223DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
halofantrine hydrochloride
8
invasive candidiasis
8
oxidative damage
8
damage agents
8
oxidative
7
hydrochloride acts
4
acts antioxidant
4
antioxidant ability
4
ability inhibitor
4

Similar Publications

Aim: St. John\'s Wort Oil (JWO) has a sedative property and it is used traditionally for the treatment of depression, neuralgia and excitability. JWO has been shown to have anticancer activity via apoptosis in glioblastoma cells.

View Article and Find Full Text PDF

Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh)

January 2025

Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.

Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

CAMKIIδ Reinforces Lipid Metabolism and Promotes the Development of B Cell Lymphoma.

Adv Sci (Weinh)

January 2025

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.

The most prevalent types of lymphomas are B cell lymphomas (BCL). Newer therapies for BCL have improved the prognosis for many patients. However, approximately 30% with aggressive BCL either remain refractory or ultimately relapse.

View Article and Find Full Text PDF

With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!