COVID-19 transmission models have conferred great value in informing public health understanding, planning, and response. However, the pandemic also demonstrated the infeasibility of basing public health decision-making on transmission models with pre-set assumptions. No matter how favourably evidenced when built, a model with fixed assumptions is challenged by numerous factors that are difficult to predict. Ongoing planning associated with rolling back and re-instituting measures, initiating surge planning, and issuing public health advisories can benefit from approaches that allow state estimates for transmission models to be continuously updated in light of unfolding time series. A model being continuously regrounded by empirical data in this way can provide a consistent, integrated depiction of the evolving underlying epidemiology and acute care demand, offer the ability to project forward such a depiction in a fashion suitable for triggering the deployment of acute care surge capacity or public health measures, and support quantitative evaluation of tradeoffs associated with prospective interventions in light of the latest estimates of the underlying epidemiology. We describe here the design, implementation, and multi-year daily use for public health and clinical support decision-making of a particle-filtered COVID-19 compartmental model, which served Canadian federal and provincial governments via regular reporting starting in June 2020. The use of the Bayesian sequential Monte Carlo algorithm of particle filtering allows the model to be regrounded daily and adapt to new trends within daily incoming data-including test volumes and positivity rates, endogenous and travel-related cases, hospital census and admissions flows, daily counts of dose-specific vaccinations administered, measured concentration of SARS-CoV-2 in wastewater, and mortality. Important model outputs include estimates (via sampling) of the count of undiagnosed infectives, the count of individuals at different stages of the natural history of frankly and pauci-symptomatic infection, the current force of infection, effective reproductive number, and current and cumulative infection prevalence. Following a brief description of the model design, we describe how the machine learning algorithm of particle filtering is used to continually reground estimates of the dynamic model state, support a probabilistic model projection of epidemiology and health system capacity utilization and service demand, and probabilistically evaluate tradeoffs between potential intervention scenarios. We further note aspects of model use in practice as an effective reporting tool in a manner that is parameterized by jurisdiction, including the support of a scripting pipeline that permits a fully automated reporting pipeline other than security-restricted new data retrieval, including automated model deployment, data validity checks, and automatic post-scenario scripting and reporting. As demonstrated by this multi-year deployment of the Bayesian machine learning algorithm of particle filtering to provide industrial-strength reporting to inform public health decision-making across Canada, such methods offer strong support for evidence-based public health decision-making informed by ever-current articulated transmission models whose probabilistic state and parameter estimates are continually regrounded by diverse data streams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888645PMC
http://dx.doi.org/10.3390/ijerph21020193DOI Listing

Publication Analysis

Top Keywords

public health
28
transmission models
20
acute care
12
health decision-making
12
algorithm particle
12
particle filtering
12
model
10
epidemiology acute
8
bayesian sequential
8
sequential monte
8

Similar Publications

: Major Depressive Disorder (MDD) is a prevalent and debilitating mental disorder that has been linked to hyperhomocysteinemia and folate deficiency. These conditions are influenced by the methylenetetrahydrofolate reductase () gene, which plays a crucial role in converting homocysteine to methionine and is essential for folate metabolism and neurotransmitter synthesis, including serotonin. : This study explored the association between and polymorphisms among Saudi MDD patients attending the Erada Complex for Mental Health and Erada Services outpatient clinic in Jeddah, Saudi Arabia.

View Article and Find Full Text PDF

Egg donation advertisements: addressing the regulatory gap.

J Assist Reprod Genet

January 2025

The University of Texas Medical Branch at Galveston, Institute for Bioethics and Health Humanities, School of Public and Population Health, Galveston, TX, USA.

Egg donation is a procedure that is powerfully advertised as a beneficial experience with limited mention of the associated risks. Egg donor recruitment advertisements target young and financially insecure women and can serve as a catalyst for interest in egg donation. In the absence of explicit egg donation advertisement regulations and without counterbalancing information from other sources, potential donors may not be able to recognize how advertisements can be misleading.

View Article and Find Full Text PDF

Perceived risk for HIV acquisition among gay, bisexual, and other men who have sex with men (GBMSM) may not align with their actual sexual HIV exposure. Factors associated with low/moderate perceived risk among GBMSM eligible for pre-exposure prophylaxis (PrEP) (based on their high estimated HIV exposure) have been poorly described in Latin America. This is a secondary analysis of a 2018 web-based cross-sectional survey in Brazil, Mexico, and Peru.

View Article and Find Full Text PDF

Background: Urine neutrophil gelatinase-associated lipocalin (uNGAL) is a biomarker for the early diagnosis of AKI.

Objectives: To evaluate uNGAL in dogs with non-associative immune mediated hemolytic anemia (IMHA) and to evaluate whether uNGAL correlates with disease severity markers, negative prognostic indicators and outcome.

Animals: Twenty-two dogs with non-associative IMHA and 14 healthy dogs.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!