A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation of Sweet Potato Porous Starch by Marine Dextranase and Its Adsorption Characteristics. | LitMetric

Preparation of Sweet Potato Porous Starch by Marine Dextranase and Its Adsorption Characteristics.

Foods

Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.

Published: February 2024

Dextranase (EC 3.2.1.11) is primarily applied in food, sugar, and pharmaceutical industries. This study focuses on using a cold shock expression system to express marine dextranase SP5-Badex; enzyme activity increased about 2.2-fold compared to previous expression. This enzyme was employed to produce sweet potato porous starch, with special emphasis on the pore size of the starch. The water and oil adsorption rates of the porous starch increased by 1.43 and 1.51 times, respectively. Extensive Fourier transform infrared spectroscopy and X-ray diffraction revealed that the crystal structure of the sweet potato starch was unaltered by enzymatic hydrolysis. The adsorption capacities of the porous starch for curcumin and proanthocyanidins were 9.59 and 12.29 mg/g, respectively. Notably, the stability of proanthocyanidins was significantly enhanced through their encapsulation in porous starch. After 2.5 h of ultraviolet irradiation, the free radical scavenging rate of the encapsulated proanthocyanidins remained at 95.10%. Additionally, after 30 days of sunlight exposure, the free radical scavenging rate of the encapsulated proanthocyanidins (84.42%) was significantly higher than that (24.34%) observed in the control group. These research findings provide substantial experimental evidence for preparing sweet potato porous starch using marine dextranase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888179PMC
http://dx.doi.org/10.3390/foods13040549DOI Listing

Publication Analysis

Top Keywords

porous starch
24
sweet potato
16
potato porous
12
marine dextranase
12
starch
8
starch marine
8
free radical
8
radical scavenging
8
scavenging rate
8
rate encapsulated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!