In recent years, rising temperatures have caused heat stress (HS), which has had a significant impact on livestock production and growth, presenting considerable challenges to the agricultural industry. Research has shown that miR-425-5p regulates cellular proliferation in organisms. However, the specific role of miR-425-5p in bovine mammary epithelial cells (BMECs) remains to be determined. The aim of this study was to investigate the potential of miR-425-5p in alleviating the HS-induced proliferation stagnation in BMECs. The results showed that the expression of miR-425-5p significantly decreased when BMEC were exposed to HS. However, the overexpression of miR-425-5p effectively alleviated the inhibitory effect of HS on BMEC proliferation. Furthermore, RNA sequencing analysis revealed 753 differentially expressed genes (DEGs), comprising 361 upregulated and 392 downregulated genes. Some of these genes were associated with proliferation and thermogenesis through enrichment analyses. Further experimentation revealed that , which acts as a target gene of miR-425-5p, is involved in the regulatory mechanism of BMEC proliferation. In summary, this study suggests that miR-425-5p can promote the proliferation of BMECs by regulating . The miR-425-5p/ axis may represent a potential pathway through which miR-425-5p ameliorates the proliferation stagnation of BMECs induced by HS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888448 | PMC |
http://dx.doi.org/10.3390/genes15020174 | DOI Listing |
Front Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Restorative Dentistry, School of Dentistry, The University of Jordan, Amman 11942, Jordan.
The epidermis, the outer layer of the skin, relies on a delicate balance of cell growth and keratinocyte differentiation for its function and renewal. Recent research has shed light on exosomes' role in facilitating skin communication by transferring molecules like miRNAs, which regulate gene expression post-transcriptionally. Additionally, these factors lead to skin aging through oxidative stress caused by reactive oxygen species (ROS).
View Article and Find Full Text PDFJ Cell Mol Med
November 2024
Department of Cardiology, Tangdu Hospital, Second Affiliated Hospital of Air Force Medical University, Xi'an, China.
The pathological activation of cardiac fibroblasts (CFs) plays a crucial role in the development of pressure overload-induced cardiac remodelling and subsequent heart failure (HF). Growing evidence demonstrates that multiple microRNAs (miRNAs) are abnormally expressed in the pathophysiologic process of cardiovascular diseases, with miR-425 recently reported to be potentially involved in HF. In this study, we aimed to investigate the effects of fibroblast-derived miR-425-5p in pressure overload-induced HF and explore the underlying mechanisms.
View Article and Find Full Text PDFCancer Med
November 2024
Department of Gynecology, Shanxi Medical University First Hospital, Taiyuan, China.
Objectives: This study aimed to investigate the prognostic value of miRNAs and ferroptosis-related genes in cervical squamous cell carcinoma.
Methods: We mined data from public databases for differentially expressed miRNAs, ferroptosis-related genes, and clinical parameters and constructed a prognostic risk model. The predictive performance of the model was evaluated using survival and receiver operating characteristic curve analyses.
Proc Natl Acad Sci U S A
September 2024
Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
The nature of microRNA (miRNA) dysfunction in carcinogenesis remains controversial because of the complex connection between miRNA structural diversity and biological processes. Here, we found that oncofetal IGF2BP3 regulates the selective production of a subset of 3'-isoforms (3'-isomiRs), including miR-21-5p and Let-7 family, which induces significant changes in their cellular seed occupancy and structural components, establishing a cancer-specific gene expression profile. The D-score, reflecting dominant production of a representative miR-21-5p+C (a 3'-isomiR), discriminated between clinical early-stage lung adenocarcinoma (LUAD) cases with low and high recurrence risks, and was associated with molecular features of cell cycle progression, epithelial-mesenchymal transition pressure, and immune evasion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!