Alcohol misuse and HIV independently induce myopathy. We previously showed that chronic binge alcohol (CBA) administration, with or without simian immunodeficiency virus (SIV), decreases differentiation capacity of male rhesus macaque myoblasts. We hypothesized that short-term alcohol and CBA/SIV would synergistically decrease differentiation capacity and impair bioenergetic parameters in female macaque myoblasts. Myoblasts from naïve (CBA/SIV), vehicle [VEH]/SIV, and CBA/SIV (N = 4-6/group) groups were proliferated (3 days) and differentiated (5 days) with 0 or 50 mM ethanol (short-term). CBA/SIV decreased differentiation and increased non-mitochondrial oxygen consumption rate (OCR) versus naïve and/or VEH/SIV. Short-term alcohol decreased differentiation; increased maximal and non-mitochondrial OCR, mitochondrial reactive oxygen species (ROS) production, and aldolase activity; and decreased glycolytic measures, ATP production, mitochondrial membrane potential (ΔΨm), and pyruvate kinase activity. Mitochondrial ROS production was closely associated with mitochondrial network volume, and differentiation indices were closely associated with key bioenergetic health and function parameters. Results indicate that short-term alcohol and CBA non-synergistically decrease myoblast differentiation capacity. Short-term alcohol impaired myoblast glycolytic function, driving the bioenergetic deficit. Results suggest potentially differing mechanisms underlying decreased differentiation capacity with short-term alcohol and CBA, highlighting the need to elucidate the impact of different alcohol use patterns on myopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888832PMC
http://dx.doi.org/10.3390/ijms25042448DOI Listing

Publication Analysis

Top Keywords

differentiation capacity
20
short-term alcohol
20
alcohol cba
12
decreased differentiation
12
alcohol
9
differentiation
8
simian immunodeficiency
8
macaque myoblasts
8
differentiation increased
8
ros production
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.

View Article and Find Full Text PDF

Background: Reactive astrocytes and neuron death by excitotoxicity are observed in Alzheimer's disease (AD). DHA-H (2-hydroxy-docosahexaenoic acid; 2-OH-C22:6 n-3) is a molecule under development that has demonstrated therapeutic efficacy in both cellular and 5xFAD mouse model of AD. DHA-H is metabolized through α-oxidation to yield HPA (Heneicosapentaenoic acid; C21:5 n-3).

View Article and Find Full Text PDF

Background: Currently, the diagnosis of Alzheimer's disease dementia (ADD) is determined based on clinical criteria, as well as specific imaging and cerebrospinal fluid (CSF) biomarker profiles. However, healthcare professionals face a variety of challenges that hinder their application, such as the interpretation and integration or large amounts of data derived from neuropsychological assessment, the importance attributed to each source of information and the impact of unknown variables, among others. Therefore, this research focuses on the development of a computerized diagnostic tool based on Artificial Intelligence (AI), to strengthen the capacity of healthcare professionals in the identification and diagnosis of ADD.

View Article and Find Full Text PDF

Recipient sex and donor leukemic cell characteristics determine leukemogenesis in patient-derived models.

Haematologica

January 2025

University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital Tübingen.

In acute myeloid leukemia (AML), leukemogenesis depends on cell-intrinsic genetic aberrations and thus, studies on AML require investigations in an in vivo setting as provided by patient derived xenografts (PDX) models. Here we report that, next to leukemic cell characteristics, recipient sex highly influences the outgrowth of AML cells in PDX models, with females being much better repopulated than males in primary as well as secondary transplantation assays. Testosterone may be the more important player since, strikingly, better engraftment was seen in castrated versus control male recipients, while ovariectomy did not significantly impair engraftment in females.

View Article and Find Full Text PDF

Introduction: Functional tests are used to establish the functional capacity of women with Greater Trochanteric Pain Syndrome (GTPS). However, the validity, reliability, or possibility of discriminating this dysfunction have not been established.

Objectives: To compare functional capacity, establish the properties of functional test measurements, and present the best test to discriminate between women with and without GTPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!