Epithelial-Mesenchymal Transition in Acute Leukemias.

Int J Mol Sci

First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece.

Published: February 2024

Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10889420PMC
http://dx.doi.org/10.3390/ijms25042173DOI Listing

Publication Analysis

Top Keywords

acute leukemias
16
epithelial-mesenchymal transition
8
chemotherapy resistance
8
emt
6
acute
4
transition acute
4
leukemias
4
leukemias epithelial-mesenchymal
4
transition emt
4
emt metabolic
4

Similar Publications

Recent advances in acute myeloid leukemia (AML) come from studies investigating younger (age<60 years) adults or older (age≥75 years) or less fit adults. Uncertainty exists for the management of otherwise healthy adults with AML in their 60s and 70s, which also represents a significant proportion of AML cases. We discuss current considerations in older, fit adults with AML including determination of fitness, what factors beyond fitness should be assessed, and finally what challenges and innovations lie ahead to improve outcomes for these patients.

View Article and Find Full Text PDF

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

Design and Discovery of Preclinical Candidate LYG-409 as a Highly Potent and Selective GSPT1 Molecular Glue Degraders.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China.

Molecular glue degraders induce "undruggable" protein degradation by a proximity-induced effect. Inspired by the clinical success of immunomodulatory drugs, we aimed to design novel molecular glue degraders targeting GSPT1. Here, we report the design of a series of GSPT1 molecular glue degraders.

View Article and Find Full Text PDF

Mechanisms of enhancer-driven oncogene activation.

Int J Cancer

January 2025

Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.

An aggressive subtype of acute myeloid leukemia (AML) is caused by enhancer hijacking resulting in MECOM overexpression. Several chromosomal rearrangements can lead to this: the most common (inv(3)/t(3;3)) results in a hijacked GATA2 enhancer, and there are several atypical MECOM rearrangements involving enhancers from other hematopoietic genes. The set of enhancers which can be hijacked by MECOM can also be hijacked by BCL11B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!