Staudinger reaction on the solid phase between an electronodeficit organic azide, such as sulfonyl azide, and the phosphite triester formed upon phosphoramidite coupling is a convenient method for the chemical modification of oligonucleotides at the internucleotidic phosphate position. In this work, 4-carboxybenzenesulfonyl azide, either with a free carboxy group or in the form of an activated ester such as pentafluorophenyl, 4-nitrophenyl, or pentafluorobenzyl, was used to introduce a carboxylic acid function to the terminal or internal internucleotidic phosphate of an oligonucleotide via the Staudinger reaction. A subsequent treatment with excess primary alkyl amine followed by the usual work-up, after prior activation with a suitable peptide coupling agent such as a uronium salt/1-hydroxybenzotriazole in the case of a free carboxyl, afforded amide-linked oligonucleotide conjugates in good yields including multiple conjugations of up to the exhaustive modification at each phosphate position for a weakly activated pentafluorobenzyl ester, whereas more strongly activated and, thus, more reactive aryl esters provided only single conjugations at the 5'-end. The conjugates synthesized include those with di- and polyamines that introduce a positively charged side chain to potentially assist the intracellular delivery of the oligonucleotide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10889076PMC
http://dx.doi.org/10.3390/ijms25042007DOI Listing

Publication Analysis

Top Keywords

staudinger reaction
12
internucleotidic phosphate
12
phosphate position
12
convenient oligonucleotide
4
oligonucleotide conjugation
4
conjugation tandem
4
tandem staudinger
4
reaction amide
4
amide bond
4
bond formation
4

Similar Publications

Staudinger Cleavages of Amides on Naphthalene for the Ipsilateral Effect of 1,8-Substituents.

Org Lett

December 2024

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

8-(Azidomethyl)-1-naphthoic acid was elaborately prepared, and its coupling with amines provided the corresponding 8-(azidomethyl)-1-naphthamides. The Staudinger reactions of 8-(azidomethyl)-1-naphthamides with phosphine produced iminophosphoranes, and easy intramolecular cyclization of the iminophosphoranes afforded 2,3-dihydro-1-benzo[]isoquinolin-1-one leaving amines with almost quantitative conversion rates for the ipsilateral effect of 1,8-substituents on naphthalene. The protocol exhibits some advantages, including a readily available protecting group, cleavages of amides in almost quantitative conversion rates, an aqueous medium, reactions at room temperature, a broad substrate scope, wide functional group tolerance, and suitable scale-up reactions.

View Article and Find Full Text PDF

Isolation of a Staudinger-type Intermediate Utilizing a Five-Membered Phosphorus-Centered Biradicaloid.

Chemistry

November 2024

Anorganische Chemie, Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock.

Article Synopsis
  • The Staudinger reaction is a technique that safely reduces unstable azides into amines, enabling the synthesis of important compounds in pharmaceuticals and natural products.
  • It involves a nucleophilic attack by a trivalent phosphine, forming a reactive triazenide intermediate.
  • Recent research demonstrates how a divalent phosphorus biradicaloid can react with azides, allowing for the capturing and characterization of the intermediate through experimental data and quantum chemical calculations.
View Article and Find Full Text PDF

A novel NIR fluorescent probe to image HNO during ferroptosis.

Anal Chim Acta

November 2024

Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China. Electronic address:

Background: As an important reactive nitrogen species (RNS), HNO has been identified as an essential signaling molecule in many physiological processes. Ferroptosis produces a large amount of reactive oxygen species and reactive nitrogen species. However, the detailed mechanism of HNO during process of ferroptosis is rarely reported, especially in the near-infrared range.

View Article and Find Full Text PDF

A new activity-based probe (ABP) of cysteine proteases (FGA139) has been designed and synthesized. The design of the ABP has been done based upon the chemical structure of an irreversible inhibitor of cysteine proteases by attaching a bodipy fluorophore at the N-terminus of the peptide backbone. The synthetic route of the probe has a metathesis and a "click" reaction as key steps.

View Article and Find Full Text PDF

Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry.

Pharmaceuticals (Basel)

September 2024

Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada.

: The incorporation of radionuclides into peptides and larger biomolecules requires efficient and sometimes biorthogonal reaction conditions, to which click chemistry provides a convenient approach. : Traditionally, click-based radiolabeling techniques have focused on classical click chemistry, such as copper(I)-catalyzed alkyne-azide [3+2] cycloaddition (CuAAC), strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), traceless Staudinger ligation, and inverse electron demand Diels-Alder (IEDDA). : However, newly emerging click-based radiolabeling techniques, including tyrosine-click, sulfo-click, sulfur(VI) fluoride exchange (SuFEx), thiol-ene click, azo coupling, hydrazone formations, oxime formations, and RIKEN click offer valuable alternatives to classical click chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!