Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD)-dependent class III histone deacetylases, which come into play in the regulation of epigenetic processes through the deacetylation of histones and other substrates. The human genome encodes for seven homologs (SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegenerative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known that fruits, typical of the Mediterranean diet, are an important source of bioactive compounds, such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted by flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways. According to the reported studies, flavonoids appear to be promising SIRT modulators in many different pathologies, a role which might be potentially evaluated in future therapies, along with encouraging the study of those SIRT members which still lack proper evidence on their support.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10889095 | PMC |
http://dx.doi.org/10.3390/ijms25041956 | DOI Listing |
Mol Neurodegener
January 2025
Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Background: Alzheimer's Disease (AD) is a neurodegenerative disease with drastically altered astrocytic metabolism. Astrocytic GABA and HO are associated with memory impairment in AD and synthesized through the Monoamine Oxidase B (MAOB)-mediated multi-step degradation of putrescine. However, the enzymes downstream to MAOB in this pathway remain unidentified.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China. Electronic address:
The sirtuin (SIRT) family is a group of seven conserved nicotinamide adenine dinucleotide-dependent histone deacetylases (SIRT1-SIRT7), which play crucial roles in various fundamental biological processes, including metabolism, aging, stress responses, inflammation, and cell survival. The role of SIRTs in neuro-pathophysiology has recently attracted significant attention. Notably, SIRT1-SIRT3 have been identified as key players in neuroprotection as they reduce neuroinflammation and regulate mitochondrial function.
View Article and Find Full Text PDFElife
December 2024
Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
Sirtuins are the major players in host immunometabolic regulation. However, the role of sirtuins in the modulation of the immune metabolism pertaining to salmonellosis is largely unknown. Here, our investigation focussed on the role of two important sirtuins, SIRT1 and SIRT3, shedding light on their impact on intracellular 's metabolic switch and pathogenesis establishment.
View Article and Find Full Text PDFBiomedicines
September 2024
Clinical Department of Neurology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
Unlabelled: SIRTs were demonstrated to play an important role in inflammatory, degenerative, and metabolic alterations, constituting the background of the central nervous system. Thus, they seem to be an appropriate object of investigation (as potential biomarkers of disease activity and/or novel therapeutic targets) in multiple sclerosis (MS), which has a complex etiology that comprises a cross-talk between all these processes. The aim of this study was to evaluate the levels of SIRT1 and SIRT2 in the serum of patients with the relapsing-remitting type of MS (RRMS), as well as their relationships with various aspects of MS-related disability.
View Article and Find Full Text PDFCells
September 2024
Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
The field of reproductive biology has made significant progress in recent years, identifying specific molecular players that influence oocyte development and function. Among them, sirtuin 3 (SIRT3) has attracted particular attention for its central role in mediating mitochondrial function and cellular stress responses in oocytes. So far, studies have demonstrated that the knockdown of SIRT3 leads to a decrease in blastocyst formation and an increase in oxidative stress within an embryo, underscoring the importance of SIRT3 in maintaining the cellular redox balance critical for embryonic survival and growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!