To comprehensively capture intra-tumor heterogeneity in head and neck cancer (HNC) and maximize the use of valid information collected in the clinical field, we propose a novel multi-modal image-text fusion strategy aimed at improving prognosis. We have developed a tailored diagnostic algorithm for HNC, leveraging a deep learning-based model that integrates both image and clinical text information. For the image fusion part, we used the cross-attention mechanism to fuse the image information between PET and CT, and for the fusion of text and image, we used the Q-former architecture to fuse the text and image information. We also improved the traditional prognostic model by introducing time as a variable in the construction of the model, and finally obtained the corresponding prognostic results. We assessed the efficacy of our methodology through the compilation of a multicenter dataset, achieving commendable outcomes in multicenter validations. Notably, our results for metastasis-free survival (MFS), recurrence-free survival (RFS), overall survival (OS), and progression-free survival (PFS) were as follows: 0.796, 0.626, 0.641, and 0.691. Our results demonstrate a notable superiority over the utilization of CT and PET independently, and exceed the result derived without the clinical textual information. Our model not only validates the effectiveness of multi-modal fusion in aiding diagnosis, but also provides insights for optimizing survival analysis. The study underscores the potential of our approach in enhancing prognosis and contributing to the advancement of personalized medicine in HNC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888043 | PMC |
http://dx.doi.org/10.3390/diagnostics14040448 | DOI Listing |
Open Res Eur
January 2025
Heidelberger Institut für Global Health, Universitätsklinikum Heidelberg, Heidelberg, Baden-Württemberg, 69120, Germany.
Introduction: The benefits of sharing participant-level data, including clinical or epidemiological data, genomic data, high-dimensional imaging data, or human-derived samples, from biomedical studies have been widely touted and may be taken for granted. As investments in data sharing and reuse efforts continue to grow, understanding the cost and positive and negative effects of data sharing for research participants, the general public, individual researchers, research and development, clinical practice, and public health is of growing importance. In this scoping review, we will identify and summarize existing evidence on the positive and negative impacts and costs of data sharing and how they are measured.
View Article and Find Full Text PDFDigit Health
January 2025
Independent Researcher, Calgary, Alberta, Canada.
Digital health (DH) and artificial intelligence (AI) in healthcare are rapidly evolving but were addressed synonymously by many healthcare authorities and practitioners. A deep understanding and clarification of these concepts are fundamental and a prerequisite for developing robust frameworks and practical guidelines to ensure the safety, efficacy, and effectiveness of DH solutions and AI-embedded technologies. Categorizing DH into technologies (DHTs) and services (DHSs) enables regulatory, HTA, and reimbursement bodies to develop category-specific frameworks and guidelines for evaluating these solutions effectively.
View Article and Find Full Text PDFGastro Hep Adv
September 2024
Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.
Background And Aims: Inadequate bowel preparation which occurs in 25% of colonoscopies is a major barrier to the effectiveness of screening for colorectal cancer. We aim to develop an artificial intelligence (machine learning) algorithm to assess photos of stool output after bowel preparation to predict inadequate bowel preparation before colonoscopy.
Methods: Patients were asked to text a photo of their stool in the commode when they believed that they neared completion of their colonoscopy bowel preparation.
United European Gastroenterol J
January 2025
"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.
View Article and Find Full Text PDFJ Dent
January 2025
Department of Community Dentistry, Semmelweis University, Budapest, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary. Electronic address:
Objectives: The global burden of stroke is increasing every year. Residual impairments from stroke reduce the future independence of affected patients while also increasing their susceptibility to oral health-related diseases. Oral healthcare prevention programs (OHCP) are vital in maintaining acceptable oral hygiene during rehabilitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!