In the domain of AI-driven healthcare, deep learning models have markedly advanced pneumonia diagnosis through X-ray image analysis, thus indicating a significant stride in the efficacy of medical decision systems. This paper presents a novel approach utilizing a deep convolutional neural network that effectively amalgamates the strengths of EfficientNetB0 and DenseNet121, and it is enhanced by a suite of attention mechanisms for refined pneumonia image classification. Leveraging pre-trained models, our network employs multi-head, self-attention modules for meticulous feature extraction from X-ray images. The model's integration and processing efficiency are further augmented by a channel-attention-based feature fusion strategy, one that is complemented by a residual block and an attention-augmented feature enhancement and dynamic pooling strategy. Our used dataset, which comprises a comprehensive collection of chest X-ray images, represents both healthy individuals and those affected by pneumonia, and it serves as the foundation for this research. This study delves deep into the algorithms, architectural details, and operational intricacies of the proposed model. The empirical outcomes of our model are noteworthy, with an exceptional performance marked by an accuracy of 95.19%, a precision of 98.38%, a recall of 93.84%, an F1 score of 96.06%, a specificity of 97.43%, and an AUC of 0.9564 on the test dataset. These results not only affirm the model's high diagnostic accuracy, but also highlight its promising potential for real-world clinical deployment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10887593PMC
http://dx.doi.org/10.3390/diagnostics14040390DOI Listing

Publication Analysis

Top Keywords

x-ray images
12
deep convolutional
8
convolutional neural
8
neural network
8
deep
4
pneumonia
4
network pneumonia
4
pneumonia detection
4
x-ray
4
detection x-ray
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!