Bio-mordants: a review.

Environ Sci Pollut Res Int

Department of Chemistry and Chemical Processing Technologies, Mustafa Çıkrıkçıoğlu Vocational School, Kayseri University, 38280, Kayseri̇, Turkey.

Published: March 2024

Due to the increasing pressure on environmentally friendly approaches and sustainable production processes, the textile dyeing industry has focused on natural colorants. Thus, the use of bio-mordants, which are biological materials, has become widespread as an alternative to metal salts, most of which are non-ecological, used in the application processes of natural colorants. In natural dyeing, dyers want to use mordant substances in the dyeing processes in order to both expand the color spectrum and improve the fastness properties. Conventional metal salts used in natural dyeing are made up of metallic ions, which, when released into the environment as wastewater effluent at the end of the dyeing process, cause major damage to the ecosystem. Many researchers have thought about using mordants derived from natural sources to address the environmental problem. This article is a review of the investigation of natural mordants used instead of metallic mordants in the process of coloring various textile materials with natural dyestuff sources. It has been determined that many substances, most of them herbal materials, are used as mordants. In this review, mordants, except for conventional metal salts, are examined under three main groups for a better understanding. These groups are as follows: (i) natural or bio-mordants, (ii) oil mordants, and (iii) new-generation and non-vegetable-based mordants. Here, researchers will find an overview of the most recent developments in green mordants as well as application techniques for a variety of mordants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948525PMC
http://dx.doi.org/10.1007/s11356-024-32174-8DOI Listing

Publication Analysis

Top Keywords

metal salts
12
mordants
9
natural
8
natural colorants
8
natural dyeing
8
conventional metal
8
dyeing
5
bio-mordants review
4
review increasing
4
increasing pressure
4

Similar Publications

Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.

View Article and Find Full Text PDF

A selective non-enzymatic synthesis of ribose simply from formaldehyde, metal salts and clays.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.

This study demonstrates that metal-doped-clay (MDC) can be a selective platform for ribose produced from formaldehyde under abiotic conditions. Ribose exhibits superior retention compared with other carbohydrates on naturally occurring minerals on the early Earth in the presence of divalent cations. This finding offers an insight into the necessity of the emergence of ribose as the backbone of extant RNA.

View Article and Find Full Text PDF

Warfare under the waves: a review of bacteria-derived algaecidal natural products.

Nat Prod Rep

January 2025

School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.

Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health.

View Article and Find Full Text PDF

Electrolyte design for reversible zinc metal chemistry.

Nat Commun

January 2025

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

Metal anodes hold significant promise for next-generation energy storage, yet achieving highly reversible plating/stripping remains challenging due to dendrite formation and side reactions. Here we present a tailored electrolyte design to surpass 99.9% Coulombic efficiency (CE) in zinc metal anodes by co-engineering salts and solvents to address two critical factors: plating morphology and the anode-electrolyte interface.

View Article and Find Full Text PDF

This study applied integrated statistical approaches, including GIS mapping and the water quality index (WQI), to assess the quality of water, soil, and plant samples which collected from Darawat Dam, Sindh, Pakistan. The samples were analyzed for physicochemical parameters and metal analyses. Results of cations in water samples were in the range Na 26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!