This work develops a hybrid active power filter (HAPF) in this article to operate in conjunction with the energy storage system (ESS), wind power generation system (WPGS), and solar energy system (SES). It employs three level shunt voltage source converters (VSC) connected to the DC-bus. Optimization of the gain values of the fractional-order proportional integral derivative controller (FOPIDC) and parameter values of the HAPF is achieved using the Jaya grey wolf hybrid algorithm (GWJA). The primary objectives of this study, aimed at enhancing power quality (PQ), include: (1) ensuring swift stabilization of DC link capacitor voltage (DCLCV); (2) reducing harmonics and improving power factor (PF); (3) maintaining satisfactory performance under different combinations of loads like EV charging load, non linear load and solar irradiation conditions. The proposed controller's performance is evaluated through three test scenarios featuring different load configurations and irradiation levels. Additionally, the HAPF is subjected to design using other optimization algorithms such as genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) to assess their respective contributions to PQ improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310476PMC
http://dx.doi.org/10.1038/s41598-024-54550-7DOI Listing

Publication Analysis

Top Keywords

hybrid active
8
jaya grey
8
grey wolf
8
optimization
5
development renewable
4
renewable energy
4
energy fed
4
fed three-level
4
three-level hybrid
4
active filter
4

Similar Publications

Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.

View Article and Find Full Text PDF

The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.

View Article and Find Full Text PDF

Dominance hierarchies are key to social organization in group-living species, requiring individuals to recognize their own and others' ranks. This is particularly complex for intermediate-ranking animals, who navigate interactions with higher- and lower-ranking individuals. Using in situ hybridization, we examined how the brains of intermediate-ranked mice in hierarchies respond to dominant and subordinate stimuli by labeling activity-induced immediate early genes and neuronal markers.

View Article and Find Full Text PDF

Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.

View Article and Find Full Text PDF

3D multifunctional wearable piezoresistive sensors have aroused extensive attention in the fields of motion detection, human-computer interaction, electronic skin, etc. However, current research mainly focuses on improving the foundational performance of piezoresistive sensors, while many advanced demands are often ignored. Herein, a 3D piezoresistive sensor based on rGO@C-ZIF-67@PU is fabricated via high temperature carbonization and a solvothermal reduction method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!