Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pre-mRNA alternative splicing is a prevalent mechanism for diversifying eukaryotic transcriptomes and proteomes. Regulated alternative splicing plays a role in many biological processes, and dysregulated alternative splicing is a feature of many human diseases. Short-read RNA sequencing (RNA-seq) is now the standard approach for transcriptome-wide analysis of alternative splicing. Since 2011, our laboratory has developed and maintained Replicate Multivariate Analysis of Transcript Splicing (rMATS), a computational tool for discovering and quantifying alternative splicing events from RNA-seq data. Here we provide a protocol for the contemporary version of rMATS, rMATS-turbo, a fast and scalable re-implementation that maintains the statistical framework and user interface of the original rMATS software, while incorporating a revamped computational workflow with a substantial improvement in speed and data storage efficiency. The rMATS-turbo software scales up to massive RNA-seq datasets with tens of thousands of samples. To illustrate the utility of rMATS-turbo, we describe two representative application scenarios. First, we describe a broadly applicable two-group comparison to identify differential alternative splicing events between two sample groups, including both annotated and novel alternative splicing events. Second, we describe a quantitative analysis of alternative splicing in a large-scale RNA-seq dataset (~1,000 samples), including the discovery of alternative splicing events associated with distinct cell states. We detail the workflow and features of rMATS-turbo that enable efficient parallel processing and analysis of large-scale RNA-seq datasets on a compute cluster. We anticipate that this protocol will help the broad user base of rMATS-turbo make the best use of this software for studying alternative splicing in diverse biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-023-00944-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!