AI Article Synopsis

  • The study investigates the effectiveness of existing pharmacokinetic models (Marsh and Schnider) for administering propofol during anesthesia, specifically for the newer MCT/LCT formulation as opposed to the older LCT formulation.
  • Adult patients undergoing surgery were given MCT/LCT propofol, and their plasma levels were measured to assess how accurately the models predicted drug concentration during anesthesia.
  • Findings show that both models performed well in predicting propofol levels, with only minor differences noted between the formulations, indicating that the existing models remain relevant for TCI of the new propofol formulation.

Article Abstract

Background: Propofol formulated with medium- and long-chain triglycerides (MCT/LCT propofol) has rapidly replaced propofol formulated with long-chain triglycerides (LCT propofol). Despite this shift, the modified Marsh and Schnider pharmacokinetic models developed using LCT propofol are still widely used for target-controlled infusion (TCI) of propofol. This study aimed to validate the external applicability of these models by evaluating their predictive performance during TCI of MCT/LCT propofol in general anesthesia.

Methods: Adult patients (n = 48) undergoing elective surgery received MCT/LCT propofol via a TCI system using either the modified Marsh or Schnider models. Blood samples were collected at various target propofol concentrations and at specific time points, including the loss of consciousness and the recovery of consciousness (13 samples per patient). The actual plasma concentration of propofol was determined using high-performance liquid chromatography. The predictive performance of each pharmacokinetic model was assessed by calculating four parameters: inaccuracy, bias, divergence, and wobble.

Results: Both the modified Marsh and Schnider models demonstrated predictive performances within clinically acceptable ranges for MCT/LCT propofol. The inaccuracy values were 24.4% for the modified Marsh model and 26.9% for the Schnider model. Both models showed an overall positive bias, 16.4% for the modified Marsh model and 16.6% for the Schnider model. The predictive performance of MCT/LCT propofol was comparable to that of LCT propofol, suggesting formulation changes might exert only a minor impact on the reliability of the TCI system during general anesthesia. Additionally, both models exhibited higher bias and inaccuracy at target concentrations ranging from 3.5 ~ 5 ug/ml than at concentrations between 2 ~ 3 ug/ml.

Conclusions: The modified Marsh and Schnider models, initially developed for LCT propofol, remain clinically acceptable for TCI with MCT/LCT propofol.

Trial Registration: This study was registered at the Clinical Research Information Service of the Korean National Institute of Health ( https://cris.nih.go.kr ; registration number: KCT0002191; 06/01/2017).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885499PMC
http://dx.doi.org/10.1186/s12871-024-02461-5DOI Listing

Publication Analysis

Top Keywords

modified marsh
28
marsh schnider
20
mct/lct propofol
20
schnider models
16
lct propofol
16
propofol
15
predictive performance
12
models
8
propofol target-controlled
8
target-controlled infusion
8

Similar Publications

Completing parts of trematode life cycles in the laboratory is a useful way to obtain experimentally infected hosts and identify how specific aspects of parasitism influence host ecology and behavior. However, a lack of knowledge about host specificity and other factors that influence prevalence can hamper those efforts. Echinostoma trivolvis lineage c is a genetically distinct member of the E.

View Article and Find Full Text PDF

Evidences of the electrogenic sulfur oxidation in constructed wetlands.

Chemosphere

December 2024

College of Environment and Ecology, Chongqing University, Chongqing, PR China. Electronic address:

The sulfur redox cycling, mainly involving sulfide oxidation and sulfate reduction, remains a crucial factor that regulates the treatment performance of constructed wetlands (CWs). However, anoxic environments normally prevail in the CW systems, harboring vast reduced sulfur and sulfur minerals, where the occurrence and mechanism of anoxic sulfide oxidation remain unknown. In this study, CW microcosms filled with quartz sand (Qtz) and pyrite (Pyt) were established to investigate the anoxic sulfur oxidation under the bioelectrochemical manipulations.

View Article and Find Full Text PDF

Ecological restoration orientated application and modification of constructed wetland substrates.

Environ Res

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering Institute of Eco-environmental Engineering, Tongji University, Shanghai, 200092, China. Electronic address:

Constructed wetlands (CWs) have gained recognition as an environmentally friendly and cost-efficient option for treating municipal, industrial, and agricultural wastewater. They treat wastewater by harnessing the combined action of physical, chemical, and biological processes within substrates, plants, and microorganisms, with substrates exerting the greatest influence on the life cycle and purification efficiency of the system. This review provides an in-depth discussion on the development and performance of various substrate types used in CWs, including natural materials, ore-based materials, biomass materials, waste materials, and modified and novel materials.

View Article and Find Full Text PDF

The formation and subsequent self-organization of a spiral electron density modulation initialized in a plasma produced by optical-field ionization of various gas species is studied. Our analytical model predicts that the spiral density modulation results from space-dependent drift velocities of the ionized electrons due to the spatial and temporal intensity distributions of the circularly polarized ionizing laser. The spiral topology of the electron density has been validated by three-dimensional particle-in-cell simulations.

View Article and Find Full Text PDF

Unraveling the impact of drought on waterbird community assembly and conservation strategies.

J Environ Manage

December 2024

College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.

Drought-induced changes in lakes and wetlands, crucial habitats for migratory waterbirds, can greatly affect their foraging and habitat utilization. These changes lead to a decline in waterbird species richness and may cause shifts in community assembly from phylogenetic and functional trait perspectives. However, a gap remains between ecological mechanistic research about these changes and conservation applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!