Chromosome compartmentalization: causes, changes, consequences, and conundrums.

Trends Cell Biol

Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. Electronic address:

Published: September 2024

The spatial segregation of the genome into compartments is a major feature of 3D genome organization. New data on mammalian chromosome organization across different conditions reveal important information about how and why these compartments form and change. A combination of epigenetic state, nuclear body tethering, physical forces, gene expression, and replication timing (RT) can all influence the establishment and alteration of chromosome compartments. We review the causes and implications of genomic regions undergoing a 'compartment switch' that changes their physical associations and spatial location in the nucleus. About 20-30% of genomic regions change compartment during cell differentiation or cancer progression, whereas alterations in response to a stimulus within a cell type are usually much more limited. However, even a change in 1-2% of genomic bins may have biologically relevant implications. Finally, we review the effects of compartment changes on gene regulation, DNA damage repair, replication, and the physical state of the cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339242PMC
http://dx.doi.org/10.1016/j.tcb.2024.01.009DOI Listing

Publication Analysis

Top Keywords

genomic regions
8
chromosome compartmentalization
4
compartmentalization changes
4
changes consequences
4
consequences conundrums
4
conundrums spatial
4
spatial segregation
4
segregation genome
4
genome compartments
4
compartments major
4

Similar Publications

A novel genotype of Babesia microti-like group in Ixodes montoyanus ticks parasitizing the Andean bear (Tremarctos ornatus) in Ecuador.

Exp Appl Acarol

January 2025

Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay.

Babesia species (Piroplasmida) are hemoparasites that infect erythrocytes of mammals and birds and are mainly transmitted by hard ticks (Acari: Ixodidae). These hemoparasites are known to be the second most common parasites infecting mammals, after trypanosomes, and some species may cause malaria-like disease in humans. Diagnosis and understanding of Babesia diversity increasingly rely on genetic data obtained through molecular techniques.

View Article and Find Full Text PDF

Dental plaque biofilms are the primary etiologic factor for various chronic oral infectious diseases. In recent years, dental plaque shows enormous potential to know about an individual microbiota. Various microbiome studies of oral cavity from different geographical locations reveals abundance of microbial species.

View Article and Find Full Text PDF

Carbapenem-resistant Acinetobacter baumannii (CRAB) is an emerging threat to healthcare settings in many countries, principally in South Asia. The current study was aimed to identify, evaluate whole-genome and characterize the prophages in genome of CRAB strain, recovered from patients of Lahore General Hospital, Lahore. More than 200 samples were collected and identified by morphological and biochemical tests.

View Article and Find Full Text PDF

A de novo, mosaic and complex chromosome 21 rearrangement causes APP triplication and familial autosomal dominant early onset Alzheimer disease.

Sci Rep

January 2025

Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs).

View Article and Find Full Text PDF

Mammarenaviruses (genus Mammarenavirus, family Arenaviridae) are rodent-borne zoonotic viruses consisting of 52 viral species, including ten that are pathogenic to humans. Currently, only two endemic mammarenavirus species are known in Europe: the human pathogenic Mammarenavirus choriomeningitidis (LCMV) and the recently discovered hedgehog-origin Mammarenavirus mecsekense (MEMV). In this study, 59 faecal specimens from Northern white-breasted hedgehogs (Erinaceus roumanicus) from different geographic regions in Hungary were investigated for mammarenavirus presence and complete genome characterization using newly designed screening primers by RT-semi-nested PCR and sequencing methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!