As the stress-inducible isoform of the heat-shock protein 90 (HSP90), the HSP90AA1 gene encodes HSP90α and plays an important role in heat stress (HS) response. Therefore, this study aimed to investigate the role of the HSP90AA1 gene in cellular responses during HS and to identify functional SNPs associated with thermotolerance in Holstein cattle. For the in vitro validation experiment of acute HS, cells from the Madin-Darby bovine kidney cell line were exposed to 42°C for 1 h, and various parameters were assessed, including cell apoptosis, cell autophagy, and the cellular functions of HSP90α by using its inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). Furthermore, the polymorphisms identified in the HSP90AA1 gene and their functions related to HS were validated in vitro. Acute HS exposure induced cell apoptosis, cell autophagy, and upregulated expression of the HSP90AA1 gene. Inhibition of HSP90α by 17-AAG treatment had a significant effect on the expression of the HSP90α protein and increased cell apoptosis. However, autophagy decreased in comparison to the control treatment when cells were exposed to 42°C for 1 h. Five SNPs identified in the HSP90AA1 gene were significantly associated with rectal temperature and respiration score in Holstein cows, in which the rs109256957 SNP is located in the 3' untranslated region (3' UTR). Furthermore, we demonstrated that the 3' UTR of HSP90AA1 is a direct target of bta-miR-1224 by cell transfection with exogenous microRNA (miRNA) mimic and inhibitor. The luciferase assays revealed that the SNP rs109256957 affects the regulation of bta-miR-1224 binding activity and alters the expression of the HSP90AA1 gene. Heat stress-induced HSP90AA1 expression maintains cell survival by inhibiting cell apoptosis and increasing cell autophagy. The rs109256957 located in the 3' UTR region is a functional variation and it affects the HSP90AA1 expression by altering its binding activity with bta-miR-1224, thereby associating with the physiological parameters of Holstein cows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2023-24007 | DOI Listing |
Toxicol Appl Pharmacol
January 2025
School of Public Health, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750000, China. Electronic address:
Background: Silicosis is a lung disease caused by the inhalation of free crystalline silica and is characterized mainly by lung inflammation and progressive pulmonary fibrosis. Shikonin, a biologically active compound isolated from the traditional Chinese medicine Comfrey, has been shown to have significant antifibrotic effects. However, the molecular mechanisms underlying the antifibrotic effects of SHK in silicosis remain unclear.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Biochemistry, Faculty of Basic Medical Science, Olabisi Onabanjo University, Sagamu Campus, Ago Iwoye, Ogun State, Nigeria.
Context: The medications for metabolic syndromes are very minimal and the available are not effective and show adverse effects. There is a huge need for the development of effective and safe drugs to battle metabolic syndromes. In this context, our study aimed to decipher the key molecules from Artocarpus communis seed hexane fraction and their possible mechanism of action against metabolic syndrome.
View Article and Find Full Text PDFGene
January 2025
College of Medical Technology, Zibo Vocational Institute, Zibo, Shandong Province 255300, China; Center of Translational Medicine, Zibo Central Hospital, Zibo, Shandong Province 255036, China. Electronic address:
Background: P-element-induced wimpy testis (PIWI) proteins bind to PIWI-interactingRNAs (piRNAs) to form the piRNA/PIWI complex, which affects protein regulation. PIWIL4, a member of the PIWI family, has been demonstrated in recent studies to promote the migration of triple-negative breast cancer (TNBC) cell line MDA-MB-231. However, the molecular mechanisms underlying cell migration remain obscure.
View Article and Find Full Text PDFCancers (Basel)
December 2024
CeRePP, 75020 Paris, France.
Purpose: To identify molecular changes during PCa invasion of adipose space using Spatial Transcriptomic Profiling of PCa cells.
Methods: This study was performed on paired intraprostatic and extraprostatic samples obtained from radical prostatectomy with pT3a pathological stages.
Results: Differential gene expression revealed upregulation of heat shock protein genes: DNAJB1, HSPA8, HSP90AA1, HSPA1B, HSPA1A in PCa PanCK+ cells from the adipose periprostatic space.
J Transl Med
January 2025
Medical College of YiChun University, Xuefu Road No 576, Yichun, 336000, Jiangxi, People's Republic of China.
Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!