The Sirtuins family, formally known as the Silent Information Regulator Factors, constitutes a highly conserved group of histone deacetylases. Recent studies have illuminated SIRT6's role in doxorubicin (DOX)-induced oxidative stress and apoptosis within myocardial cells. Nevertheless, the extent of SIRT6's impact on DOX-triggered myocardial cell aging and damage remains uncertain, with the associated mechanisms yet to be fully understood. In our research, we examined the influence of SIRT6 on DOX-induced cardiomyocyte senescence using β-galactosidase and γ-H2AX staining. Additionally, we gauged the mRNA expression of senescence-associated genes, namely p16, p21, and p53, through Real-time PCR. Employing ELISA assay kits, MDA, and total SOD activity assay kits, we measured inflammatory factors TNF-α, IL-6, and IL-1β, alongside oxidative stress-related indicators. The results unequivocally indicated that SIRT6 overexpression robustly inhibited DOX-induced cardiomyocyte senescence. Furthermore, we established that SIRT6 overexpression suppressed the inflammatory response and oxidative stress induced by DOX in cardiomyocytes. Conversely, silencing SIRT6 exacerbated DOX-induced cardiomyocyte injury. Our investigations further unveiled that SIRT6 upregulated the expression of genes CD36, CPT1, LCAD, MCAD associated with fatty acid oxidation through its interaction with PPARα, thereby exerting anti-aging effects. In vivo, the overexpression of SIRT6 was observed to restore DOX-induced declines in EF and FS to normal levels in mice. Echocardiography and HE staining revealed the restoration of cardiomyocyte alignment, affording protection against DOX-induced myocardial senescence and injury. The findings from this study suggest that SIRT6 holds significant promise as a therapeutic target for mitigating DOX-induced cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2024.110920 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Biotechnology, National institute of Pharmaceutical Education and Research (NIPER), Guwahati, India. Electronic address:
Cardiotoxic effect of Doxorubicin (Dox) limits its clinical application. Previously, we reported that Dox induces phosphorylation of lamin A/C (pS22 lamin A/C), increased nuclear size, damage to the nuclear membrane, and cell death. However, the activation of signalling pathway during this event remains elusive, and it is unclear whether increased phospho-lamin A/C activates the cell death pathway in heart.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning, China.
Introduction: The cardiotoxicity and subsequent Heart Failure (HF) induced by Doxorubicin (DOX) limit the clinical application of DOX. Valsartan (Val) is an angiotensin II receptor blocker that could attenuate the HF induced by DOX. However, the underlying mechanism of Val in this process is not fully understood.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
Objective: To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.
Methods: A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks.
Life Sci
January 2025
Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong 226001, China. Electronic address:
Doxorubicin (DOX), a chemotherapeutic agent utilized in the management of cancer, provokes cardiotoxicity although effective remedy is lacking. Given that DOX provokes oxidative stress and cell death in cardiomyocytes, this study evaluated the possible involvement of cuproptosis, a newly identified form of cell death, in DOX-instigated cardiac remodeling and contractile dysfunction, alongside the impact of the heavy metal scavenger metallothionein (MT) on DOX cardiomyopathy. Cardiac-specific MT transgenic and wild-type (WT) mice were treated with DOX (5 mg/kg/wk.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland.
Doxorubicin (DOX) has been widely used as a cytotoxic chemotherapeutic. However, DOX has a number of side effects, such as myelotoxicity or gonadotoxicity, the most dangerous of which is cardiotoxicity. Cardiotoxicity can manifest as cardiac arrhythmias, myocarditis, and pericarditis; life-threatening late cardiotoxicity can result in heart failure months or years after the completion of chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!