Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Diabetes mellitus (DM) is a major risk factor for atrial structural remodeling and atrial fibrillation (AF). Calpain activity is hypothesized to promote atrial remodeling and AF.
Objective: The purpose of this study was to investigate the role of calpain in diabetes-associated AF, fibrosis, and calcium handling dysfunction.
Methods: DM-associated AF was induced in wild-type (WT) mice and in mice overexpressing the calpain inhibitor calpastatin (CAST-OE) using high-fat diet feeding followed by low-dose streptozotocin injection (75 mg/kg). DM and AF outcomes were assessed by measuring blood glucose levels, fibrosis, and AF susceptibility during transesophageal atrial pacing. Intracellular Ca transients, spontaneous Ca release events, and intracellular T-tubule membranes were measured by in situ confocal microscopy.
Results: WT mice with DM had significant hyperglycemia, atrial fibrosis, and AF susceptibility with increased atrial myocyte calpain activity and Ca handling dysfunction relative to control treated animals. CAST-OE mice with DM had a similar level of hyperglycemia as diabetic WT littermates but lacked significant atrial fibrosis and AF susceptibility. DM-induced atrial calpain activity and downregulation of the calpain substrate junctophilin-2 were prevented by CAST-OE. Atrial myocytes of diabetic CAST-OE mice exhibited improved T-tubule membrane organization, Ca handling, and reduced spontaneous Ca release events compared to littermate controls.
Conclusion: This study confirmed that DM promotes calpain activation, atrial fibrosis, and AF in mice. CAST-OE effectively inhibits DM-induced calpain activation and reduces atrial remodeling and AF incidence through improved intracellular Ca homeostasis. Our results support calpain inhibition as a potential therapy for preventing and treating AF in DM patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hrthm.2024.02.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!