Chemical structure of hydrocarbons significantly affects removal performance and microbial responses in gas biotrickling filters.

Bioresour Technol

Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China. Electronic address:

Published: April 2024

The control of emissions of short-chain hydrocarbons with different structures is critical for the petrochemical industry. Herein, three two-carbon-containing (C2) hydrocarbons, ethane, ethylene, and acetylene, were chosen as pollutants to study the effects of chemical structure of hydrocarbons on removal performance and microbial responses in biotrickling filters. Results showed that the removal efficiency (RE) of C2 hydrocarbons followed the sequence of acetylene > ethane > ethylene. When the inlet loading rate was 30 g/(m·h) and the empty bed residence time was 60 s, the RE of ethane, ethylene, and acetylene was 57 ± 4.0 %, 49 ± 1.0 %, and 84 ± 2.7 %, respectively. The high water solubility resulted in the high removal of C2 hydrocarbons, while a low surface tension enhanced the removal of C2 hydrocarbons. Additionally, the microbial community, enzyme activity, and extracellular properties of microorganisms also contributed to the difference in C2 hydrocarbon removal. These results could be referred for the effective control of light hydrocarbon emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.130480DOI Listing

Publication Analysis

Top Keywords

chemical structure
8
structure hydrocarbons
8
hydrocarbons removal
8
removal performance
8
performance microbial
8
microbial responses
8
biotrickling filters
8
ethane ethylene
8
ethylene acetylene
8
removal hydrocarbons
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!