Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cisplatin resistance remains a persistent challenge in cervical cancer (CC) treatment. Molecular biomarkers have garnered attention for their association with cisplatin resistance in various diseases. Long non-coding RNAs (lncRNAs) exert significant influence on CC development. This study explores the role of LOC644656 in regulating cisplatin resistance in CC. Parental and cisplatin-resistant CC cells underwent cisplatin treatment. Functional assays assessed cell proliferation and apoptosis under different conditions. RNA pull-down with mass spectrometry, along with literature review, elucidated the interaction between LOC644656, ZNF143, and E6-AP. Mechanistic assays analyzed the relationship between different factors. RT-qPCR and western blot quantified RNA and protein levels, respectively. In vivo models validated E6-AP's function. Results revealed LOC644656 overexpression in cisplatin-resistant CC cells, exacerbating cell growth. LOC644656 recruited ZNF143 to activate E6-AP transcription, promoting cisplatin resistance in CC. In conclusion, LOC644656 positively modulates E6-AP expression via ZNF143-mediated transcriptional activation, contributing to cisplatin resistance in CC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2024.111115 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!