Therapeutic effect of mitochondrial transplantation on burn injury.

Free Radic Biol Med

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China. Electronic address:

Published: March 2024

As mitochondrial damage or dysfunction is commonly observed following burn injuries, we investigated whether mitochondrial transplantation (MT) can result in therapeutic benefits in the treatment of burns. Human immortalized epidermal cells (HaCaT) and Kunming mice were used to establish a heat-injured cell model and a deep partial-thickness skin burn animal model, respectively. The cell model was established by exposing HaCaT cells to 45 or 50 °C for 10 min, after which cell proliferation was assayed using fluorescent double-staining and colony formation assays, cell migration was assessed using colloidal gold migration and scratch assays, and cell cycle progression and apoptosis were measured by flow cytometry. Histopathological staining, immunohistochemistry, nick-end labeling analysis, and enzyme-linked immunosorbent assays were used to evaluate the effects of MT on inflammation, tissue recovery, apoptosis, and scar growth in a mouse model. The therapeutic effects were observed in the heat-injured HaCaT cell model. MT promoted cell viability, colony formation, proliferation, and migration; decreased G1 phase; promoted cell division; and decreased apoptosis. Wound-healing promotion, anti-inflammation (decreased mast cell aggregation, down-regulated of TNF-α, IL-1β, IL-6, and up-regulated IL-10), acceleration of proliferation recovery (up-regulated CD34 and VEGF), apoptosis reduction, and scar formation reduction (decreased collagen I/III ratio and TGF-β1) were observed in the MT mouse model. The MT mode of action was, however, not investigated in this study. In conclusion, our data indicate that MT exerts a therapeutic effect on burn injuries both in vitro and in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.02.019DOI Listing

Publication Analysis

Top Keywords

cell model
12
cell
9
mitochondrial transplantation
8
burn injuries
8
colony formation
8
assays cell
8
mouse model
8
promoted cell
8
model
6
therapeutic
4

Similar Publications

The first evidence that Orthopoxvirus induced the expansion and the recall of effector innate Vδ2T-cells was described in a macaque model. Although, an engagement of αβ T-cells specific response in patients infected with human monkeypox (Mpox) was demonstrated, little is known about the role of γδ T-cells during Mpox infection. IFN-γ-producing γδ T-cells in the resistance to poxviruses may a key role in inducing a protective type 1 memory immunity.

View Article and Find Full Text PDF

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a globally recognized neurodevelopmental condition characterized by repetitive and restrictive behavior, persistent deficits in social interaction and communication, mental disturbances, etc., affecting approximately 1 in 100 children worldwide. A combination of genetic and environmental factors is involved in the etiopathogenesis of the disease, but specific biomarkers have not yet been identified.

View Article and Find Full Text PDF

Comprehensive review of animal models in diabetes research using chemical agents.

Lab Anim

January 2025

Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.

Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!