Decreasing microtubule detyrosination modulates Nav1.5 subcellular distribution and restores sodium current in mdx cardiomyocytes.

Cardiovasc Res

Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Published: May 2024

Aims: The microtubule (MT) network plays a major role in the transport of the cardiac sodium channel Nav1.5 to the membrane, where the latter associates with interacting proteins such as dystrophin. Alterations in MT dynamics are known to impact on ion channel trafficking. Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, is associated with an increase in MT detyrosination, decreased sodium current (INa), and arrhythmias. Parthenolide (PTL), a compound that decreases MT detyrosination, has shown beneficial effects on cardiac function in DMD. We here investigated its impact on INa and Nav1.5 subcellular distribution.

Methods And Results: Ventricular cardiomyocytes (CMs) from wild-type (WT) and mdx (DMD) mice were incubated with either 10 µM PTL, 20 µM EpoY, or dimethylsulfoxide (DMSO) for 3-5 h, followed by patch-clamp analysis to assess INa and action potential (AP) characteristics in addition to immunofluorescence and stochastic optical reconstruction microscopy (STORM) to investigate MT detyrosination and Nav1.5 cluster size and density, respectively. In accordance with previous studies, we observed increased MT detyrosination, decreased INa and reduced AP upstroke velocity (Vmax) in mdx CMs compared to WT. PTL decreased MT detyrosination and significantly increased INa magnitude (without affecting INa gating properties) and AP Vmax in mdx CMs, but had no effect in WT CMs. Moreover, STORM analysis showed that in mdx CMs, Nav1.5 clusters were decreased not only in the grooves of the lateral membrane (LM; where dystrophin is localized) but also at the LM crests. PTL restored Nav1.5 clusters at the LM crests (but not at the grooves), indicating a dystrophin-independent trafficking route to this subcellular domain. Interestingly, Nav1.5 cluster density was also reduced at the intercalated disc (ID) region of mdx CMs, which was restored to WT levels by PTL. Treatment of mdx CMs with EpoY, a specific MT detyrosination inhibitor, also increased INa density, while decreasing the amount of detyrosinated MTs, confirming a direct mechanistic link.

Conclusion: Attenuating MT detyrosination in mdx CMs restored INa and enhanced Nav1.5 localization at the LM crest and ID. Hence, the reduced whole-cell INa density characteristic of mdx CMs is not only the consequence of the lack of dystrophin within the LM grooves but is also due to reduced Nav1.5 at the LM crest and ID secondary to increased baseline MT detyrosination. Overall, our findings identify MT detyrosination as a potential therapeutic target for modulating INa and subcellular Nav1.5 distribution in pathophysiological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135645PMC
http://dx.doi.org/10.1093/cvr/cvae043DOI Listing

Publication Analysis

Top Keywords

mdx cms
28
detyrosination
10
nav15
10
ina
10
mdx
9
cms
9
nav15 subcellular
8
sodium current
8
detyrosination decreased
8
nav15 cluster
8

Similar Publications

Decreasing microtubule detyrosination modulates Nav1.5 subcellular distribution and restores sodium current in mdx cardiomyocytes.

Cardiovasc Res

May 2024

Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Aims: The microtubule (MT) network plays a major role in the transport of the cardiac sodium channel Nav1.5 to the membrane, where the latter associates with interacting proteins such as dystrophin. Alterations in MT dynamics are known to impact on ion channel trafficking.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM.

View Article and Find Full Text PDF

Modeling Duchenne Muscular Dystrophy Cardiomyopathy with Patients' Induced Pluripotent Stem-Cell-Derived Cardiomyocytes.

Int J Mol Sci

May 2023

Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the gene, resulting in death by the end of the third decade of life at the latest. A key aspect of the DMD clinical phenotype is dilated cardiomyopathy, affecting virtually all patients by the end of the second decade of life. Furthermore, despite respiratory complications still being the leading cause of death, with advancements in medical care in recent years, cardiac involvement has become an increasing cause of mortality.

View Article and Find Full Text PDF

Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!