This paper addresses the influence of time-varying delay and nonlinear activation functions with sector restrictions on the stability of discrete-time neural networks. Compared to previous works that mainly focuses on the influence of delay information, this paper devotes to activation nonlinear functions information to help compensate the analysis technique based on Lyapunov-Krasovskii functional (LKF). A class of delay-dependent Lurie-Postnikov type integral terms involving sector constraints of nonlinear activation function is proposed to complement the LKF construction. The less conservative criteria for the stability analysis of discrete-time delayed networks is given by using improved LKF. Numerical examples show that conservatism can be reduced by the delay-dependent integral terms involving nonlinear activation functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106195DOI Listing

Publication Analysis

Top Keywords

nonlinear activation
12
delay-dependent lurie-postnikov
8
lurie-postnikov type
8
stability analysis
8
analysis discrete-time
8
discrete-time delayed
8
neural networks
8
activation functions
8
integral terms
8
terms involving
8

Similar Publications

Police tactical group (PTG) officers respond to the most demanding and high-risk police situations. As such, PTG personnel require exceptional physical fitness, and selection for employment often evaluates fitness both directly and indirectly. While heart rate (HR) is often used to measure physical effort, heart rate variability (HRV) may be a valuable tool for measuring stress holistically.

View Article and Find Full Text PDF

Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.

View Article and Find Full Text PDF

Background: Post-activation performance enhancement (PAPE) has demonstrated efficacy in acutely improving athletic performance. However, its distinction from general warm-up (GW) effects remains ambiguous, and experimental designs adopted in most PAPE studies exhibit important limitations.

Objectives: The aims of this work are to (i) examine the effects of research methodology on PAPE outcomes, (ii) explore PAPE outcomes in relation to comparison methods, performance measures, GW comprehensiveness, recovery duration, participants' characteristics, conditioning activity (CA) parameters, and (iii) make recommendations for future PAPE experimental designs on the basis of the results of the meta-analysis.

View Article and Find Full Text PDF

(1) Background: At present, the bio-inspired visual neural models have made significant achievements in detecting the motion direction of the translating object. Variable contrast in the figure-ground and environmental noise interference, however, have a strong influence on the existing model. The responses of the lobula plate tangential cell (LPTC) neurons of Drosophila are robust and stable in the face of variable contrast in the figure-ground and environmental noise interference, which provides an excellent paradigm for addressing these challenges.

View Article and Find Full Text PDF

Many planning and decision activities in logistics and supply chain management are based on forecasts of multiple time dependent factors. Therefore, the quality of planning depends on the quality of the forecasts. We compare different state-of-the-art forecasting methods in terms of forecasting performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!