Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phenolic compounds are considered an important group of bioactive molecules that are present in abundant quantities in fruits such as berries and cherries; hence, the analysis and quantification of these compounds are of significant interest to the scientific community. The current study aimed to develop a novel analytical method using liquid chromatography and high-resolution mass spectrometry (UHPLC-HRMS) for the rapid, comprehensive and simultaneous analysis of 66 phenolic compounds optimized for the selected five types of fruits commercially available in Canada. Bioactive compounds that could potentially be metabolite markers for each berry were identified. Various phenolic compounds were identified and quantified in all five selected fruits. Notably, blackberries were rich in anthocyanins such as cyanidin-3-glucoside (368.4 ± 6 µg/g), while blueberries were rich in peonidin-3-glucoside (1083 ± 9 µg/g). In addition, raspberries and cherries contained significant amounts of cyanidin-3-rutinoside, at 3156 ± 36 µg/g and 301.3 ± 2 µg/g, respectively, while cranberries contained the highest concentrations of petunidin at 829.7 ± 3 µg/g. The newly developed and validated UHPLC-HRMS method proved helpful in comprehensively analyzing phenolic compounds in blueberry, raspberry, cranberry, blackberry and cherry. Identifying and quantifying bioactives can lead to applications in neutraceutical and pharmaceutical industries by using phenolic-rich berry extracts in functional foods, supplements, or pharmaceutical products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.138778 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!