Asymmetric response of transition metal cationic orbitals to applied electric field.

J Hazard Mater

Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China. Electronic address:

Published: April 2024

AI Article Synopsis

  • * Researchers used quantum calculations to reveal changes in hybrid orbitals and orbital energies of TM cations when influenced by an external electric field, resulting in significant increases in effective charges and modifications of surface interactions.
  • * The study's findings have major implications for practical applications, such as improving the removal of TM cations from wastewater and boosting the efficiency of TM-catalyzed reactions in environmental and chemical engineering.

Article Abstract

Understanding the quantum mechanical mechanisms underlying atomic/ionic interfacial processes and phenomena, particularly their dependence on the electronic orbital rearrangement of atoms/ions in an external electric field, remains a significant challenge. This study investigated the asymmetric response of transition metal (TM) cationic orbitals when subjected to an applied electric field. Quantum mechanical calculations were employed to quantify the newly formed hybrid orbitals and evaluate the corresponding orbital energies of the TM cations. Analysis of the quantitative contribution of asymmetric orbital hybridization to TM-surface interactions showed a significant change in orbital energy and increased effective charges of TM cations at the charged surface. This asymmetric response, induced by a negative external electric field generated from the structural charges of clay minerals (e.g., montmorillonite), repels electrons from the outer-shell orbital. This repulsion consequently increases the electron binding energy of the inner-shell orbitals, leading to new surface reactions, polarization-enhanced induction force, and polarization-induced covalent bonding between the TM cations and the charged surface. Our theoretical predictions regarding TM-clay mineral interactions are consistent with the experimental observations of TM cation adsorption. This finding has significant implications for the adsorptive removal of TM cations from wastewaters and for enhancing the catalytic efficiency of TM-surface catalysts. The unique physical and chemical characteristics exhibited by TMs at charged particle surfaces, resulting from their asymmetric response, can play pivotal roles in environmental and chemical engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133718DOI Listing

Publication Analysis

Top Keywords

asymmetric response
16
electric field
16
response transition
8
transition metal
8
metal cationic
8
cationic orbitals
8
applied electric
8
quantum mechanical
8
external electric
8
cations charged
8

Similar Publications

Comparative transcriptomic analysis of left-right sensory differences in Haliotis discus hannai.

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

School of Fisheries, Ludong University, Yantai 264025, China. Electronic address:

Asymmetric development, in which functional differences occur between left-right symmetrical organs, is widespread in organisms, including fish and mollusks. However, the asymmetry of symmetrical sensory structures in Haliotis discus hannai, a gastropod with a sensitive sensory system, remains unknown. This study analyzed the transcriptomes of three sensory structures (eyestalks, cephalic tentacles, and epipodial tentacles) to explore potential asymmetries in this species.

View Article and Find Full Text PDF

Refining the clinical and therapeutic spectrum of granulomatous myositis from a large cohort of patients.

J Neurol

January 2025

Sorbonne Université, Assistance Publique, Hôpitaux de Paris, Inserm U974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France.

Objectives: Granulomatous myositis (GM) is a rare entity whose precise clinical features and therapeutic outcomes have not yet been well defined. Given the limited evidence, data from a large cohort of patients is needed to aid in the recognition and management of this condition.

Methods: We retrospectively analyzed our institutional databases to identify patients who had myositis and non-caseating granuloma on muscle biopsy (GM).

View Article and Find Full Text PDF

It is under debate whether intersubjectivity-the capacity to experience a sense of togetherness around an action-is unique to humans. In humans, heavy tickling-a repeated body probing play that causes an automatic response including uncontrollable laughter (gargalesis)-has been linked to the emergence of intersubjectivity as it is aimed at making others laugh (self-generated responses are inhibited), it is often asymmetrical (older to younger subjects), and it elicits agent-dependent responses (pleasant/unpleasant depending on social bond). Intraspecific tickling and the related gargalesis response have been reported in humans, chimpanzees, and anecdotally in other great apes, potentially setting the line between hominids and other anthropoids.

View Article and Find Full Text PDF

Proper polarization of newly generated neurons is a critical process for neural network formation and brain development. The pan-neurotrophin p75 receptor plays a key role in this process localizing asymmetrically in one of the differentiating neurites and specifying its axonal identity in response to neurotrophins. During axonal specification, p75 levels are transiently modulated, yet the molecular mechanisms underlying this process are not known.

View Article and Find Full Text PDF

Background: Insights into the development and evolution of asymmetrical jaws will require an understanding of the gene regulatory networks that underpin the differential morphogenesis of the maxillary and mandibular domains of the first pharyngeal arch in a variety of gnathostomes. While a robust relationship has been demonstrated between jaw patterning and the Endothelin-Dlx gene axis, much less is known of the next level of genes in the jaw patterning hierarchy.

Results: Several genes, whose expression depends on Dlx5 and/or Dlx6, have been identified in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!