Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease; its cause is unknown, and it leads to notable health problems. Currently, only two drugs are recommended for IPF treatment. Although these drugs can mitigate lung function decline, neither can improve nor stabilize IPF or the symptoms perceived by patients. Therefore, the development of novel treatment options for pulmonary fibrosis is required. The present study investigated the effects of a novel compound, caffeic acid ethanolamide (CAEA), on human pulmonary fibroblasts and evaluated its potential to mitigate bleomycin-induced pulmonary fibrosis in mice. CAEA inhibited TGF-β-induced α-SMA and collagen expression in human pulmonary fibroblasts, indicating that CAEA prevents fibroblasts from differentiating into myofibroblasts following TGF-β exposure. In animal studies, CAEA treatment efficiently suppressed immune cell infiltration and the elevation of TNF-α and IL-6 in bronchoalveolar lavage fluid in mice with bleomycin-induced pulmonary fibrosis. Additionally, CAEA exerted antioxidant effects by recovering the enzymatic activities of oxidant scavengers. CAEA directly inhibited activation of TGF-β receptors and protected against bleomycin-induced pulmonary fibrosis through inhibition of the TGF-β/SMAD/CTGF signaling pathway. The protective effect of CAEA was comparable to that of pirfenidone, a clinically available drug. Our findings support the potential of CAEA as a viable method for preventing the progression of pulmonary fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.116298 | DOI Listing |
Int J Pharm
January 2025
CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.
Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.
View Article and Find Full Text PDFPharmaceutics
January 2025
School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect.
View Article and Find Full Text PDFPathogens
January 2025
Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes.
View Article and Find Full Text PDFJ Clin Med
January 2025
2nd Pulmonary Department, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.
: Long-term lung sequelae in severe COVID-19 survivors, as well as their treatment, are poorly described in the current literature. : To investigate lung fibrotic sequelae in survivors of severe/critical COVID-19 pneumonia and their fate according to a "non-interventional" approach. : Prospective study of the above COVID-19 survivors after hospital discharge from March 2020 to October 2022.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with a median survival of 3-5 years. Antifibrotic therapies like pirfenidone and nintedanib slow progression, but the outcomes vary. Gender may influence disease presentation, progression, and response to treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!