Membrane lipids have been known to influence multiple signalling and cellular processes. Dysregulation of lipids at the neuronal membrane is connected to a significant alteration of the brain function and morphology, leading to brain diseases and neurodegeneration. Understanding the lipid composition and turnover of neuronal membrane will provide a significant insight into the molecular events underlying the regulatory effects of these biomolecules in a neuronal system. In this study, we aimed to characterize the composition and turnover of the plasma membrane lipids in human neural progenitor cells (NPCs) at an early differentiation stage into midbrain neurons using ToF-SIMS imaging. Lipid composition of the native plasma membrane was explored, followed by an examination of the lipid turnover using different isotopically labelled lipid precursors, including C-choline, C-lauric acid, N-linoleic, and C-stearic. Our results showed that differentiating NPCs contain a high abundance of ceramides, glycerophosphoserines, neutral glycosphingolipids, diradylglycerols, and glycerophosphocholines at the plasma membrane. In addition, different precursors were found to incorporate into different membrane lipids which are specific for the short- or long-carbon chains, and the unsaturation or saturation stage of the precursors. The lipid structure of neuronal membrane reflects the differentiation status of NPCs, and it can be altered significantly using a particular lipid precursor. Our study illustrates a potential of ToF-SIMS imaging to study native plasma membrane lipids and elucidate complex cellular processes by providing molecular -rich information at a single cell level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.125762DOI Listing

Publication Analysis

Top Keywords

plasma membrane
20
membrane lipids
16
neuronal membrane
12
membrane
10
turnover plasma
8
neural progenitor
8
progenitor cells
8
cellular processes
8
lipid composition
8
composition turnover
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!