The low concentration of water-based lubricants and the high chemical inertness of the additives involved are often regarded as basic norms in the design of liquid lubricants. Herein, a novel liquid superlubricant of an aqueous solution containing a relatively high concentration of salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), is reported for the first time, and the superlubricity stability and load-bearing capacity of the optimized system (MgO/LiTFSI) are effectively strengthened by the addition of only trace (0.10 wt %) water-chemically active MgO additives. It demonstrates higher applicable loads, lower COF (∼0.004), and stability relative to the base solution. Only a trace amount of MgO additive is needed for the superlubricity, which makes up for the cost and environmental deficiencies of LiTFSI. The weak interaction region between free water and the outer-layer water of Li hydration shells becomes a possible ultralow shear resistance sliding interface; the Mg(OH) layer, generated by the reaction of MgO with water, further creates additional weakly interacting interfaces, leading to the formation of an asymmetric contact between the clusters/particles within the hydrodynamic film by moderating the competition between interfacial water and free water, thus achieving high load-bearing macroscopic superlubricity. This study deepens the contribution of electrolyte concentration to ionic hydration and superlubricity due to the low shear slip layer formed by interfacial water competition with water-activated solid additives, providing new insights into the next generation of high load-bearing water-based liquid superlubricity systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c15826 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Synovial exudation, creeping, and lubrication failure in natural cartilage under a long-term normal loading can be counteracted by a tribo-rehydration (sliding-induced rehydration) phenomenon. Hydrogels, as porous materials, can also restore interfacial lubrication and overcome creep through this strategy. At appropriate sliding velocities, water molecules at the interface contact inlet are driven by hydrodynamic pressures into the porous network to resist creep extrusion.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial HO behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
The environmental challenges linked to petroleum-based polymers have accelerated the search for alternative materials like polylactic acid (PLA). Diverse nanofillers, ranging from inorganic to organic and hybrid inorganic/organic varieties, are employed to bolster PLA performance. Yet, non-synergistic nanofillers often underperform due to inadequate dispersion and singular functionality within the PLA matrix.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Chitosan (CS) is a versatile polysaccharide with numerous inherent biological activity, while the lack of amphiphilicity limits its application in emulsion-based systems. In this study, erythorbyl myristate (EM) with interfacial activity was chemically modified to 5-O-succinyl EM (EMS) and grafted onto CS to improve the emulsifying properties. The grafting reaction was conducted by the catalysis of protease, with the progress of the reaction monitored by HPLC analysis and UV absorbance measurement.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China.
Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!