Binary systems of supermassive black holes are promising sources of low-frequency gravitational waves (GWs) and bright electromagnetic emission. Pulsar timing array GW searches for individual binaries have been limited to only a few candidate systems due to computational demands, which get worse as more pulsars are added. By modeling the GW signal using only components from when the GW passes Earth (rather than also each pulsar), we find constraints on the binary's total mass and GW frequency that are similar to a full signal analysis, yet ∼70 times more efficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.061401 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom.
Efficient planning is a distinctive hallmark of intelligence in humans, who routinely make rapid inferences over complex world contexts. However, studies investigating how humans accomplish this tend to focus on naive participants engaged in simplistic tasks with small state spaces, which do not reflect the intricacy, ecological validity, and human specialization in real-world planning. In this study, we examine the street-by-street route planning of London taxi drivers navigating across more than 26,000 streets in London (United Kingdom).
View Article and Find Full Text PDFAdv Mater
January 2025
College of Textiles, Donghua University, Shanghai, 201620, China.
Fiber-based artificial muscles are soft actuators used to mimic the movement of human muscles. However, using high modulus oxide ceramics to fabricate artificial muscles with high energy and power is a challenge as they are prone to brittle fracture during torsion. Here, a ceramic metallization strategy is reported that solves the problem of low torsion and low ductility of alumina (AlO) ceramics by chemical plating a thin copper layer on alumina filaments.
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
Hard carbon (HC) materials are suitable anodes for sodium-ion batteries (SIBs) but still suffer from insufficient initial Coulombic efficiency (ICE). Promoting sodium storage via the pore filling mechanism is an effective way to improve the ICE, and the key here is regulating the pore structures of HC. In this work, coal-derived HC is successfully engineered with abundant accessible closed nanopores by treating the coal precursors with a facile destructive oxidation strategy.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.
View Article and Find Full Text PDFFront Artif Intell
January 2025
Lawrence Livermore National Laboratory, Livermore, CA, United States.
Packed columns are commonly used in post-combustion processes to capture CO emissions by providing enhanced contact area between a CO-laden gas and CO-absorbing solvent. To study and optimize solvent-based post-combustion carbon capture systems (CCSs), computational fluid dynamics (CFD) can be used to model the liquid-gas countercurrent flow hydrodynamics in these columns and derive key determinants of CO-capture efficiency. However, the large design space of these systems hinders the application of CFD for design optimization due to its high computational cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!