We present a parameter-free ab initio calculation of the α-particle monopole transition form factor in the framework of nuclear lattice effective field theory. We use a minimal nuclear interaction that was previously used to reproduce the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii. The results for the monopole transition form factor are in good agreement with recent precision data from Mainz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.062501 | DOI Listing |
Commun Phys
January 2025
Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä, Finland.
Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208106, India.
The hydrodynamic and thermal interactions between neighboring vapor bubbles on hot surfaces play a crucial role in heat transport and flow characteristics. To investigate these interactions, we conducted numerical simulations of saturated vapor bubbles in a two-dimensional square enclosure filled with liquid water. The water was heated at the bottom and cooled at the top to replicate boiling at 100^{∘}C and normal atmospheric pressure.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
The formalism of composite and intertwined orders has been remarkably successful in discussing the complex phase diagrams of strongly correlated materials and high-superconductors. Here, we propose that composite orders are also realized in ferroelectric and ferromagnetic materials when lattice anisotropy is taken into account. This composite order emerges above the ferroic phase transition, and its type is determined by the easy axis of magnetization or polarization, respectively.
View Article and Find Full Text PDFChaos
November 2024
Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
Motivated by the well-known fractal packing of chromatin, we study the Rouse-type dynamics of elastic fractal networks with embedded, stochastically driven, active force monopoles and force dipoles that are temporally correlated. We compute, analytically-using a general theoretical framework-and via Langevin dynamics simulations, the mean square displacement (MSD) of a network bead. Following a short-time superdiffusive behavior, force monopoles yield anomalous subdiffusion with an exponent identical to that of the thermal system.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
Smart materials that adapt to various stimuli, such as light, hold immense potential across many fields. Photoresponsive molecules like azobenzenes, which undergo - photoisomerization when exposed to light, are particularly valuable for applications in smart coatings, light-controlled adhesives, and photoresists in semiconductors and integrated circuits. Despite advances in using azobenzene moieties for stimuli-responsive adhesives, the role of push-pull electronic effects in regulating reversible adhesion remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!