A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clarifying the relationship between mental illness and recidivism using machine learning: A retrospective study. | LitMetric

Objective: There is currently inconclusive evidence regarding the relationship between recidivism and mental illness. This retrospective study aimed to use rigorous machine learning methods to understand the unique predictive utility of mental illness for recidivism in a general population (i.e.; not only those with mental illness) prison sample in the United States.

Method: Participants were adult men (n = 322) and women (n = 72) who were recruited from three prisons in the Midwest region of the United States. Three model comparisons using Bayesian correlated t-tests were conducted to understand the incremental predictive utility of mental illness, substance use, and crime and demographic variables for recidivism prediction. Three classification statistical algorithms were considered while evaluating model configurations for the t-tests: elastic net logistic regression (GLMnet), k-nearest neighbors (KNN), and random forests (RF).

Results: Rates of substance use disorders were particularly high in our sample (86.29%). Mental illness variables and substance use variables did not add predictive utility for recidivism prediction over and above crime and demographic variables. Exploratory analyses comparing the crime and demographic, substance use, and mental illness feature sets to null models found that only the crime and demographics model had an increased likelihood of improving recidivism prediction accuracy.

Conclusions: Despite not finding a direct relationship between mental illness and recidivism, treatment of mental illness in incarcerated populations is still essential due to the high rates of mental illnesses, the legal imperative, the possibility of decreasing institutional disciplinary burden, the opportunity to increase the effectiveness of rehabilitation programs in prison, and the potential to improve meaningful outcomes beyond recidivism following release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890739PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297448PLOS

Publication Analysis

Top Keywords

mental illness
36
illness recidivism
12
predictive utility
12
crime demographic
12
recidivism prediction
12
mental
10
illness
9
relationship mental
8
recidivism
8
machine learning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!