Glycolytic metabolism may account for antitumor immunity failure. Pyruvate kinase M2 (PKM2) and platelet phosphofructokinase (PFKP), two key enzymes involved in the glycolytic pathway, are hyperactivated in head and neck squamous cell carcinoma (HNSCC). Using ganetespib as a drug model for heat shock protein 90 (HSP90) inhibition and combining results from clinical trials and animal treatment, we demonstrated that HSP90 inhibition leads to a blockade of glycolytic flux in HNSCC cells by simultaneously suppressing PKM2 and PFKP at both the transcriptional and posttranslational levels. Down-regulation of tumor glycolysis facilitates tumor infiltration of cytotoxic T cells via suppression of glycolysis-dependent interleukin-8 signaling. The addition of ganetespib to radiation attenuates radiation-induced up-regulation of PKM2 and PFKP and potentiates T cell-mediated antitumor immunity, resulting in a more potent antitumor effect than either treatment alone, providing a molecular basis for exploring the combination of HSP90 inhibitors with radiotherapy to improve outcomes for patients with HNSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10889358 | PMC |
http://dx.doi.org/10.1126/sciadv.adk3663 | DOI Listing |
Crit Rev Oncog
January 2025
Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam 532410, Andhra Pradesh, India.
The heat shock protein 90 kDa (HSP90) is highly conserved across diverse species, including humans, and upregulated in various cancers. As a result, it has been identified as a promising target for advancing anticancer medicine. The introduction of combinatorial chemistry in drug discovery has emphasized the need to develop new technologies in screening, designing, decoding, synthesizing, and screening combinatorial drug libraries.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Laboratory Animal Center, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.
Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.
Zhongguo Zhong Yao Za Zhi
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.
View Article and Find Full Text PDFLife Sci
January 2025
Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China. Electronic address:
As a common side effect of radiotherapy, radiation-induced intestinal injury (RIII) greatly affects the prognosis of patients and the efficacy of radiotherapy. Current therapeutic strategies for RIII are still very limited. Thus, the identification of effective radioprotective agents is of great importance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!