Ubiquitous ultrafast isomerization is paramount in photoexcited molecules, in which non-adiabatic coupling among multiple electronic states can occur. We use the pump-probe Coulomb explosion imaging method to study the isomerization of CHCl molecules. We find that the isomerization under our strong field pump-probe scheme proceeds along multiple pathways, which are encoded in several distinct branches of the time-resolved kinetic energy release spectra for the CH+HCl Coulomb explosion channel. Apart from the isomerized dissociative pathway in neutral and cationic excited states, the pump laser can also induce coherent vibrational dynamics in two coupled intermediate states and set up the initial conditions for the two concurrently proceeding isomerization pathways. The isomerization of CHCl provides an intriguing example of a chemical reaction consisting of multiple pathways and non-adiabatic dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c03404 | DOI Listing |
ACS Omega
January 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan, ROC.
Here, we report the design, synthesis, and comprehensive characterization of the bis-cholesterol supramolecular gelator, which contains photochromic stiff-stilbene as a bridging unit. The -isomer of stiff-stilbene bridged bis-cholesterol (-) was first synthesized with a systematic design, which can be further converted into its -isomer (-) with a high degree of efficiency (ca. 100%) upon exposure to 385 nm UV light.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2024
Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy.
We have carried out a comparative study on three sets of eutectic mixtures based on choline chloride (ChCl) and hydroxyphenol isomers having two hydroxyl groups in the -, -, and -positions of the aromatic ring, namely catechol (Cate), resorcinol (Reso), and hydroquinone (Hydro), respectively. Differential scanning calorimetry highlighted a different thermal behavior of the mixtures depending on the composition and precursor isomerism. These systems behave as deep eutectic solvents (DESs) with the exception of the ChCl/Cate mixture at a 1 : 0.
View Article and Find Full Text PDFJ Chromatogr A
August 2024
Department of Chemistry, National Kaohsiung Normal University, Taiwan.
Int J Mol Sci
February 2024
Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia.
The - and -isomers of 6-(3-(3,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl)cyclohex-3-ene-1-carboxylic acid (- and -) were obtained by the reaction of 3,4-dichloro-'-hydroxybenzimidamide and -1,2,3,6-tetrahydrophthalic anhydride. Cocrystals of - with appropriate solvents (-‧½(1,2-DCE), -‧½(1,2-DBE), and -‧½CH) were grown from 1,2-dichloroethane (1,2-DCE), 1,2-dibromoethane (1,2-DBE), and a -hexane/CHCl mixture and then characterized by X-ray crystallography. In their structures, - is self-assembled to give a hybrid 2D supramolecular organic framework (SOF) formed by the cooperative action of O-H⋯O hydrogen bonding, Cl⋯O halogen bonding, and π⋯π stacking.
View Article and Find Full Text PDFJ Pharm Biomed Anal
February 2024
Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus. Electronic address:
A comprehensive study was performed to determine an optimum enantioseparation method for fluorine-substituted amphetamine and cathinone derivatives (fluor-amphetamine and fluor-cathinone derivatives), using a binary system consisting of carboxymethyl-β-CD (CM-β-CD) and a deep eutectic solvent (DES), namely choline chloride-ethylene glycol (ChCl-EG). Under this framework, the optimization and modeling of the separation conditions in a binary system were performed with the objective of maximizing resolution and minimizing analysis time. This was achieved through the application of response surface methodology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!