The rotationally averaged collision cross-section (CCS) determined by ion mobility-mass spectrometry (IM-MS) facilitates the identification of various biomolecules. Although machine learning (ML) models have recently emerged as a highly accurate approach for predicting CCS values, they rely on large data sets from various instruments, calibrants, and setups, which can introduce additional errors. In this study, we identified and validated that ion's polarizability and mass-to-charge ratio (/) have the most significant predictive power for traveling-wave IM CCS values in relation to other physicochemical properties of ions. Constructed solely based on these two physicochemical properties, our CCS prediction approach demonstrated high accuracy (mean relative error of <3.0%) even when trained with limited data (15 CCS values). Given its ability to excel with limited data, our approach harbors immense potential for constructing a precisely predicted CCS database tailored to each distinct experimental setup. A Python script for CCS prediction using our approach is freely available at https://github.com/MSBSiriraj/SVR_CCSPrediction under the GNU General Public License (GPL) version 3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934814 | PMC |
http://dx.doi.org/10.1021/acs.jcim.3c01491 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.
Trapped ion mobility spectrometry (TIMS) using parallel accumulation serial fragmentation (PASEF) is an advanced analytical technique that offers several advantages in mass spectrometry (MS)-based lipidomics. TIMS provides an additional dimension of separation to mass spectrometry and accurate collision cross-section (CCS) measurements for ions, aiding in the structural characterization of molecules. This is especially valuable in lipidomics for identifying and distinguishing isomeric or structurally similar compounds.
View Article and Find Full Text PDFWe report the first implementation of ion mobility mass spectrometry combined with an ultra-high throughput sample introduction technology for high throughput screening (HTS). The system integrates differential ion mobility (DMS) with acoustic ejection mass spectrometry (AEMS), termed DAEMS, enabling the simultaneous quantitation of structural isomers that are the sub-strates and products of isomerase mediated reactions in intermediary metabolism. We demonstrate this potential by comparing DAEMS to a luminescence assay for the isoform of phosphoglycerate mutase (iPGM) distinctively present in pathogens offering an opportunity as a drug target for a variety of microbial and parasite borne diseases.
View Article and Find Full Text PDFAnal Sci
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
"Liquid gold" has been traditionally used for over a century to decorate ceramicware, but its chemical composition has not been thoroughly investigated. One of the keys to successfully characterizing liquid gold, which is a complex mixture, is to distinguish Au-containing products from other chemicals. In this paper, we propose a separation based on the difference in collision cross section, of which chemicals with heavy atoms are relatively smaller than those without in ion mobility-mass spectrometry (IM-MS).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.
Most conventional methods used to measure protein melting temperatures reflect changes in structure between different conformational states and are typically fit to a two-state model. Population abundances of distinct conformations were measured using variable-temperature electrospray ionization ion mobility mass spectrometry to investigate the thermally induced unfolding of the model protein cytochrome . Nineteen conformers formed at high temperature have elongated structures, consistent with unfolded forms of this protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!