Fungi belonging to the genus have garnered increasing attention in recent years. One of the members of the genus, , has been identified as the causal agent of a severe bat disease. Simultaneously, the knowledge of species has expanded, in parallel with the increased availability of genome sequences. Moreover, exhibits great potential as a producer of specialized metabolites, displaying a diverse array of biological activities. Despite these significant advancements, the genetic landscape of remains largely unexplored due to the scarcity of suitable molecular tools for genetic manipulation. In this study, we successfully implemented RNAi-mediated gene silencing and CRISPR/Cas9-mediated disruption in , using an Antarctic strain of as a model. Both methods were applied to target , a gene involved in red pigment biosynthesis. Silencing of the gene to levels of 90% or higher eliminated red pigment production, resulting in transformants exhibiting a white phenotype. On the other hand, the CRISPR/Cas9 system led to a high percentage (73%) of transformants with a one-nucleotide insertion, thereby inactivating and abolishing red pigment production, resulting in a white phenotype. The successful application of RNAi-mediated gene silencing and CRISPR/Cas9-mediated disruption represents a significant advancement in research, opening avenues for comprehensive functional genetic investigations within this underexplored fungal genus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10889956PMC
http://dx.doi.org/10.3390/jof10020157DOI Listing

Publication Analysis

Top Keywords

red pigment
16
silencing crispr/cas9-mediated
12
crispr/cas9-mediated disruption
12
pigment production
12
genetic manipulation
8
gene involved
8
involved red
8
rnai-mediated gene
8
gene silencing
8
white phenotype
8

Similar Publications

Diagnosis of nevoid melanoma (NeM) is often difficult because NeM closely resembles a common nevus clinically and histologically. A retrospective study was conducted on 110 patients diagnosed with and/or treated for primary nevoid melanoma at the Veneto Institute of Oncology and at the University Hospital of Padua from August 1999. Mean Breslow thickness was of 1.

View Article and Find Full Text PDF

Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.

View Article and Find Full Text PDF

Soybean has outstanding nutritional and medicinal value because of its abundant protein, oil, and flavonoid contents. This crop has rich seed coat colors, such as yellow, green, black, brown, and red, as well as bicolor variants. However, there are limited reports on the synthesis of flavonoids in the soybean seed coats of different colors.

View Article and Find Full Text PDF

The fungi have traditionally been used in Asia for food coloring. Unfortunately, the most well-known species, , very often produce mycotoxin citrinin in addition to pigments, which poses a significant problem for the use of pigments in foods. There is a step in pigment biosynthesis where a side chain of five or seven carbons is attached to the tetraketide, the product of polyketide synthase, resulting in the formation of pigments in pairs.

View Article and Find Full Text PDF

Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!