An asymmetric dual-grating gate bilayer graphene-based field effect transistor (ADGG-GFET) with an integrated bowtie antenna was fabricated and its response as a Terahertz (THz) detector was experimentally investigated. The device was cooled down to 4.5 K, and excited at different frequencies (0.15, 0.3 and 0.6 THz) using a THz solid-state source. The integration of the bowtie antenna allowed to obtain a substantial increase in the photocurrent response (up to 8 nA) of the device at the three studied frequencies as compared to similar transistors lacking the integrated antenna (1 nA). The photocurrent increase was observed for all the studied values of the bias voltage applied to both the top and back gates. Besides the action of the antenna that helps the coupling of THz radiation to the transistor channel, the observed enhancement by nearly one order of magnitude of the photoresponse is also related to the modulation of the hole and electron concentration profiles inside the transistor channel by the bias voltages imposed to the top and back gates. The creation of local and regions leads to the formation of homojuctions (np, pn or pp+) along the channel that strongly affects the overall photoresponse of the detector. Additionally, the bias of both back and top gates could induce an opening of the gap of the bilayer graphene channel that would also contribute to the photocurrent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891749 | PMC |
http://dx.doi.org/10.3390/nano14040383 | DOI Listing |
Nanotechnology
January 2025
Experimentalphysik, Saarland University, Fachrichtung 7.2, Campus E2.6, 66123 Saarbruecken, Saarbrucken, Saarland, 66123, GERMANY.
Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties.
View Article and Find Full Text PDFNanotechnology
January 2025
Experimentalphysik, Saarland University, Fachrichtung 7.2, Campus E2.6, 66123 Saarbruecken, Saarbrucken, Saarland, 66123, GERMANY.
Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties.
View Article and Find Full Text PDFNano Lett
December 2024
School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Nanoscale material systems are central to next-generation optoelectronic and quantum technologies, yet their development remains hindered by limited characterization tools, particularly at terahertz (THz) frequencies. Far-field THz spectroscopy techniques lack the sensitivity for investigating individual nanoscale systems, whereas in near-field THz nanoscopy, surface states, disorder, and sample-tip interactions often mask the response of the entire nanoscale system. Here, we present a THz resonance-amplified near-field spectroscopy technique that can detect subtle conductivity changes in isolated nanoscale systems─such as a single InAs nanowire─under ultrafast photoexcitation.
View Article and Find Full Text PDFSci Rep
November 2024
School of Information Science and Engineering, Engineering Research Center for Metallurgical Automation and Detecting Technology Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China.
In this paper, a novel compact bandpass filter (BPF) with a wide out-of-band rejection is proposed. It can achieve broadband characteristics by combining hollow bowtie-type spoof surface plasmon polaritons (SSPPs) with complementary H-type defected grounded structures (DGSs) through aperture coupling. Compared with the conventional SSPP unit cells, the hollow bowtie-type structure exhibits much better slow-wave characteristics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Physics, Incheon National University, Incheon 22012, Republic of Korea.
This study showcases the conformal geometries of van der Waals materials with metallic structures utilizing viscoelastic support layers. Mechanically exfoliated nanometer-thick graphite flakes were transferred onto metal structures with various side slopes using two different polymers: polycarbonate (PC) and polyethylene (PE). We proposed a morphology-based evaluation of the macroscale conformity that can contribute to the selection of a proper support layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!