Isoamyl alcohol is an important biomass fermentation product that can be used as a gasoline surrogate, jet fuel precursor, and platform molecule for the synthesis of fine chemicals and pharmaceuticals. This study reports on the use of graphene oxide immobilized membra (GOIMs) for the recovery of isoamyl alcohol from an aqueous matrix. The separation was performed using air-sparged membrane distillation (ASMD). In contrast to a conventional PTFE membrane, which exhibited minimal separation, preferential adsorption on graphene oxide within GOIMs resulted in highly selective isoamyl alcohol separation. The separation factor reached 6.7, along with a flux as high as 1.12 kg/m h. Notably, the overall mass transfer coefficients indicated improvements with a GOIM. Optimization via response surfaces showed curvature effects for the separation factor due to the interaction effects. An empirical model was generated based on regression equations to predict the flux and separation factor. This study demonstrates the potential of GOIMs and ASMD for the efficient recovery of higher alcohols from aqueous solutions, highlighting the practical applications of these techniques for the production of biofuels and bioproducts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890467PMC
http://dx.doi.org/10.3390/membranes14020049DOI Listing

Publication Analysis

Top Keywords

isoamyl alcohol
16
graphene oxide
12
separation factor
12
recovery isoamyl
8
oxide immobilized
8
air-sparged membrane
8
membrane distillation
8
separation
6
alcohol
4
alcohol graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!