Associations between Sperm Epigenetic Age and Semen Parameters: An Evaluation of Clinical and Non-Clinical Cohorts.

Curr Issues Mol Biol

C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.

Published: February 2024

The well-documented relationship between chronological age and the sperm methylome has allowed for the construction of epigenetic clocks that estimate the biological age of sperm based on DNA methylation, which we previously termed sperm epigenetic age (SEA). Our lab demonstrated that SEA is positively associated with the time taken to achieve pregnancy; however, its relationship with semen parameters is unknown. A total of 379 men from the Longitudinal Investigation of Fertility and Environment (LIFE) study, a non-clinical cohort, and 192 men seeking fertility treatment from the Sperm Environmental Epigenetics and Development Study (SEEDS) were included in the study. Semen analyses were conducted for both cohorts, and SEA was previously generated using a machine learning algorithm and DNA methylation array data. Association analyses were conducted via multivariable linear regression models adjusting for BMI and smoking status. We found that SEA was not associated with standard semen characteristics in SEEDS and LIFE cohorts. However, SEA was significantly associated with higher sperm head length and perimeter, the presence of pyriform and tapered sperm, and lower sperm elongation factor in the LIFE study ( < 0.05). Based on our results, SEA is mostly associated with defects in sperm head morphological factors that are less commonly evaluated during male infertility assessments. SEA shows promise to be an independent biomarker of sperm quality to assess male fecundity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10887546PMC
http://dx.doi.org/10.3390/cimb46020101DOI Listing

Publication Analysis

Top Keywords

sea associated
12
sperm
9
sperm epigenetic
8
epigenetic age
8
semen parameters
8
age sperm
8
dna methylation
8
life study
8
analyses conducted
8
cohorts sea
8

Similar Publications

De-novo Genome Assembly of the Edwardsiid Anthozoan Edwardsia elegans.

G3 (Bethesda)

January 2025

Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28223.

Cnidarians (sea anemones, corals, hydroids, and jellyfish) are a key outgroup for comparisons with bilaterial animals to trace the evolution of genomic complexity and diversity within the animal kingdom, as they separated from most other animals 100s of millions of years ago. Cnidarians have extensive diversity, yet the paucity of genomic resources limits our ability to compare genomic variation between cnidarian clades and species. Here we report the genome for Edwardsia elegans, a sea anemone in the most specious genus of the family Edwardsiidae, a phylogenetically important family of sea anemones that contains the model anemone Nematostella vectensis.

View Article and Find Full Text PDF

Plasmids play a crucial role in facilitating genetic exchange and enhancing the adaptability of microbial communities. Despite their importance, environmental plasmids remain understudied, particularly those in fragile and underexplored ecosystems such as the deep-sea. In this paper we implemented a bioinformatics pipeline to study the composition, diversity, and functional attributes of plasmid communities (plasmidome) in 81 deep-sea metagenomes from the Tara and Malaspina expeditions, sampled from the Pacific, Atlantic, and Indian Oceans at depths ranging from 270 to 4005 m.

View Article and Find Full Text PDF

This study employed in-situ online monitoring to assess the impact of Spartina alterniflora harvesting on greenhouse gas emissions. Their fluxes and δC values were measured in unvegetated tidal flat, low and medium vegetation coverage areas of the salt marsh wetlands along the south shore of Hangzhou Bay about a month after harvest. The objective was to clarify fluxes changes and interactions with environmental factors.

View Article and Find Full Text PDF

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Disease is a key driver of community and ecosystem structure, especially when it strikes foundation species. In the widespread marine foundation species eelgrass (Zostera marina), outbreaks of wasting disease have caused large-scale meadow collapse in the past, and the causative pathogen, Labyrinthula zosterae, is commonly found in meadows globally. Research to date has mainly focused on abiotic environmental drivers of seagrass wasting disease, but there is strong evidence from other systems that biotic interactions such as herbivory can facilitate plant diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!