Electrochemical DNA Cleavage Sensing for EcoRV Activity and Inhibition with an ERGO Electrode.

Biosensors (Basel)

Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea.

Published: January 2024

An electrochemically reduced graphene oxide (ERGO) electrode-based electrochemical assay was developed for rapid, sensitive, and straightforward analysis of both activity and inhibition of the endonuclease EcoRV. The procedure uses a DNA substrate designed for EcoRV, featuring a double-stranded DNA (dsDNA) region labeled with methylene blue (MB) and a single-stranded DNA (ssDNA) region immobilized on the ERGO surface. The ERGO electrode, immobilized with the DNA substrate, was subsequently exposed to a sample containing EcoRV. Upon enzymatic hydrolysis, the cleaved dsDNA fragments were detached from the ERGO surface, leading to a decrease in the MB concentration near the electrode. This diminished the electron transfer efficiency for MB reduction, resulting in a decreased reduction current. This assay demonstrates excellent specificity and high sensitivity, with a limit of detection (LOD) of 9.5 × 10 U mL. Importantly, it can also measure EcoRV activity in the presence of aurintricarboxylic acid, a known inhibitor, highlighting its potential for drug discovery and clinical diagnostic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10886839PMC
http://dx.doi.org/10.3390/bios14020073DOI Listing

Publication Analysis

Top Keywords

ecorv activity
8
activity inhibition
8
ergo electrode
8
dna substrate
8
ergo surface
8
ecorv
5
ergo
5
electrochemical dna
4
dna cleavage
4
cleavage sensing
4

Similar Publications

The Monoamine Oxidase-A () EcoRV polymorphism (rs1137070) is a unique synonymous mutation (c.1409 T > C) within the gene, which plays a crucial role in gene expression and function. This study aimed to explore the relationship between the mouse rs1137070 genotype and differences in gene expression.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a complex nosocomial infectious agent responsible for numerous illnesses, with its growing resistance variations complicating treatment development. Studies have emphasized the importance of virulence factors OprE and OprF in pathogenesis, highlighting their potential as vaccine candidates. In this study, B-cell, MHC-I, and MHC-II epitopes were identified, and molecular linkers were active to join these epitopes with an appropriate adjuvant to construct a vaccine.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmid-borne Type II restriction-modification (RM) systems cause post-segregational killing (PSK) due to the loss of restriction and modification enzymes during cell division, leading to the breakdown of unmethylated DNA.
  • A CRISPR interference method was developed to investigate PSK and found that different RM systems have distinct stability and recovery behaviors upon plasmid loss, particularly noting the Esp1396I system's limited duration of activity.
  • This research suggests that the dynamics of RM systems and host cell growth rates are crucial for understanding PSK, highlighting the need to consider the lifetimes of system components in modeling these processes.
View Article and Find Full Text PDF

An electrochemically reduced graphene oxide (ERGO) electrode-based electrochemical assay was developed for rapid, sensitive, and straightforward analysis of both activity and inhibition of the endonuclease EcoRV. The procedure uses a DNA substrate designed for EcoRV, featuring a double-stranded DNA (dsDNA) region labeled with methylene blue (MB) and a single-stranded DNA (ssDNA) region immobilized on the ERGO surface. The ERGO electrode, immobilized with the DNA substrate, was subsequently exposed to a sample containing EcoRV.

View Article and Find Full Text PDF

We present a novel approach that integrates electrical measurements with molecular dynamics (MD) simulations to assess the activity of type-II restriction endonucleases, specifically EcoRV. Our approach employs a single-walled carbon nanotube field-effect transistor (swCNT-FET) functionalized with the EcoRV substrate DNA, enabling the detection of enzymatic cleavage events. Notably, we leveraged the methylene blue (MB) tag as an "orientation guide" to immobilize the EcoRV substrate DNA in a specific direction, thereby enhancing the proximity of the DNA cleavage reaction to the swCNT surface and consequently improving the sensitivity in EcoRV detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!