Fretting and Fretting Corrosion Behavior of Additively Manufactured Ti-6Al-4V and Ti-Nb-Zr Alloys in Air and Physiological Solutions.

J Funct Biomater

Clemson-Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, SC 29464, USA.

Published: February 2024

Additive manufacturing (AM) of orthopedic implants has increased in recent years, providing benefits to surgeons, patients, and implant companies. Both traditional and new titanium alloys are under consideration for AM-manufactured implants. However, concerns remain about their wear and corrosion (tribocorrosion) performance. In this study, the effects of fretting corrosion were investigated on AM Ti-29Nb-21Zr (pre-alloyed and admixed) and AM Ti-6Al-4V with 1% nano yttria-stabilized zirconia (nYSZ). Low cycle (100 cycles, 3 Hz, 100 mN) fretting and fretting corrosion (potentiostatic, 0 V vs. Ag/AgCl) methods were used to compare these AM alloys to traditionally manufactured AM Ti-6Al-4V. Alloy and admixture surfaces were subjected to (1) fretting in the air (i.e., small-scale reciprocal sliding) and (2) fretting corrosion in phosphate-buffered saline (PBS) using a single diamond asperity (17 µm radius). Wear track depth measurements, fretting currents and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis of oxide debris revealed that pre-alloyed AM Ti-29Nb-21Zr generally had greater wear depths after 100 cycles (4.67 +/- 0.55 µm dry and 5.78 +/- 0.83 µm in solution) and higher fretting currents (0.58 +/- 0.07 µA). A correlation (R = 0.67) was found between wear depth and the average fretting currents with different alloys located in different regions of the relationship. No statistically significant differences were observed in wear depth between in-air and in-PBS tests. However, significantly higher amounts of oxygen (measured by oxygen weight % by EDS analysis of the debris) were embedded within the wear track for tests performed in PBS compared to air for all samples except the ad-mixed Ti-29Nb-21Zr ( = 0.21). For traditional and AM Ti-6Al-4V, the wear track depths (dry fretting: 2.90 +/- 0.32 µm vs. 2.51 +/- 0.51 μm, respectively; fretting corrosion: 2.09 +/- 0.59 μm vs. 1.16 +/- 0.79 μm, respectively) and fretting current measurements (0.37 +/- 0.05 μA vs. 0.34 +/- 0.05 μA, respectively) showed no significant differences. The dominant wear deformation process was plastic deformation followed by cyclic extrusion of plate-like wear debris at the end of the stroke, resulting in ribbon-like extruded material for all alloys. While previous work documented improved corrosion resistance of Ti-29Nb-21Zr in simulated inflammatory solutions over Ti-6Al-4V, this work does not show similar improvements in the relative fretting corrosion resistance of these alloys compared to Ti-6Al-4V.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10889821PMC
http://dx.doi.org/10.3390/jfb15020038DOI Listing

Publication Analysis

Top Keywords

fretting corrosion
24
fretting
13
wear track
12
fretting currents
12
wear
9
+/-
9
fretting fretting
8
corrosion
8
manufactured ti-6al-4v
8
100 cycles
8

Similar Publications

The significance of biomedical applications of Ti alloys is best emphasized by their widespread utilization as implantable materials, such as internal supports and bone replacements. Ti alloys are sensitive to fretting wear, which leads to the early failure of Ti implants. Improved wear resistance of such implants is essential to ensure a prolonged implant life.

View Article and Find Full Text PDF

Modular hip implants are a clinically successful and widely used treatment for patients with arthritis. Despite ongoing retrieval studies the understanding of the fundamental physico-chemical mechanisms of friction and wear within the head-taper interface is still limited. Here, we Raman-spectroscopically analyze structural features of the biotribological material which is formed within the taper joint between Ti6Al4V and low-carbon cobalt alloy or high-nitrogen steel surfaces in in vitro gross-slip fretting corrosion tests with bovine calf serum.

View Article and Find Full Text PDF

Fretting-corrosion at the Implant-Abutment Interface Simulating Clinically Relevant Conditions.

Dent Mater

November 2024

Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA; Department of Biomedical Sciences, University of Illinois-School of Medicine at Rockford, Rockford, IL, USA. Electronic address:

Objective: Implant treatment is provided to individuals with normal, idealized masticatory forces and also to patients with parafunctional habits such as grinding, clenching, and bruxing. Dental erosion is a common increasing condition and is reported to affect 32 % of adults, increasing with age. This oral environment is conducive to tribocorrosion and the potential loss of materials from the implant surfaces and interfaces with prosthetic components.

View Article and Find Full Text PDF

Reactive oxygen species, electrode potential and pH affect CoCrMo alloy corrosion and semiconducting behavior in simulated inflammatory environments.

Acta Biomater

September 2024

Clemson - Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Bioengineering Building, 101D, MSC 501, 68 Presidents St, BE 325, Medical University of South Carolina, Charleston, SC 29425, USA. Electronic address:

Crevice corrosion in modular taper junctions of hip or knee replacements using cobalt-chrome-molybdenum (CoCrMo) alloys remains a clinical concern. Non-mechanically-driven corrosion has been less explored compared to mechanically assisted crevice corrosion. This study hypothesized that solution chemistry within crevices, inflammation, and cathodic electrode potential shifts during fretting result in low pH and generate reactive oxygen species (ROS), affecting oxide film behavior.

View Article and Find Full Text PDF

The nickel-based alloy Inconel 600, strengthened by solution treatment, finds extensive application as a heat exchange pipe material in steam generators within nuclear power plants, owing to its exceptional resistance to high-temperature corrosion. However, fretting corrosion occurs at the contact points between the pipe and support frame due to gas-liquid flow, leading to wear damage. This study investigates the fretting wear behavior and damage mechanism of the nickel-based alloy Inconel 600 and 304 stainless steel friction pairs under point contact conditions in a water environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!