Estimation of Validity of A-Mode Ultrasound for Measurements of Muscle Thickness and Muscle Quality.

Bioengineering (Basel)

Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea.

Published: February 2024

This study aimed to determine whether amplitude modulation (A-mode) ultrasound (US) provides accurate and reliable measurements comparable to those obtained using brightness modulation (B-mode) US under diverse conditions. Thirty healthy participants (15 women and 15 men) underwent measurements of subcutaneous fat thickness (SFT), muscle thickness (MT), and muscle quality (MQ) in the trapezius and biceps brachii muscles using both US modes before and after exercises designed to stimulate the respective muscles. Among the three key indices, the results demonstrated the high validity of the A-mode, with minimal mean differences (MDs) between the two devices less than 0.91 mm and intra-class correlation coefficients (ICCs) exceeding 0.95 for all measures. In addition, the correlation coefficients between the error scores and average scores for the trapezius and biceps brachii suggested no evidence of systematic error. The trapezius MT and MQ significantly increased, and the biceps brachii MT significantly increased after the exercises ( < 0.05). Notably, both the A- and B-modes exhibited the same trend in these post-exercise changes in the muscle. This study suggests that low-cost and low-resolution A-mode US provides measurements of SFT, MT, and MQ similar to the more expensive, high-resolution B-mode imaging. A-mode US is an affordable and portable alternative for muscle assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10886028PMC
http://dx.doi.org/10.3390/bioengineering11020149DOI Listing

Publication Analysis

Top Keywords

biceps brachii
12
validity a-mode
8
a-mode ultrasound
8
muscle thickness
8
thickness muscle
8
muscle quality
8
trapezius biceps
8
correlation coefficients
8
muscle
6
a-mode
5

Similar Publications

Mechanical properties of the bicipital aponeurosis.

J Mech Behav Biomed Mater

December 2024

School of Engineering, University of Guelph, Guelph, Ontario, Canada. Electronic address:

As a biarticular muscle, the biceps brachii both supinates the forearm and flexes the elbow and shoulder, thus allowing the upper limb to perform a variety of activities of daily living (ADL). The biceps brachii originates on the coracoid apex as well as the supraglenoid tubercle and inserts on the radial tuberosity. At the distal end, the bicipital aponeurosis (BA) provides a transition of the biceps tendon into the antebrachial fascia.

View Article and Find Full Text PDF

Impact of Low Muscle Mass and Bone Mineral Density on Long-Term Outcomes of Acute Ischemic Stroke: A prospective study.

Clin Nutr ESPEN

December 2024

Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, Turkey; Hacettepe University Faculty of Medicine, Department of Neurology, Neurology Intensive Care Unit, Stroke Unit, Ankara. Electronic address:

Background: Premorbid sarcopenia, osteoporosis, and obesity are epiphenomena that affect survival and functional outcomes in patients with acute ischemic stroke. The effects of preexisting sarcopenia and/or osteopenia on long-term outcome after ischemic stroke were herein prospectively studied.

Methods: Dual-energy x-ray absorptiometry (DeXA), bio-impedance analysis (BIA) and muscle ultrasonography (US) data were prospectively collected within the first 72 hours in 297 consecutive acute ischemic stroke patients (45.

View Article and Find Full Text PDF

The Transverse Humeral Ligament: An Anatomical Narrative Review.

Clin Anat

December 2024

Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Fukuoka, Japan.

Shoulder pain often involves the tendon of the long head of the biceps brachii (LHBT) and the transverse humeral ligament (THL). Traditionally, the THL is considered a ligament that prevents the LHBT from dislocating, but recent studies suggest that it may be part of the subscapularis tendon. This review evaluates the nature of the THL and its overlying structures.

View Article and Find Full Text PDF

How Does Blood-Flow Restriction Alter Forehand Drive Performance and Muscle Recruitment in Tennis Players?

Int J Sports Physiol Perform

December 2024

School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia.

Purpose: To examine the acute effects of forehand drive (FD) preconditioning with or without blood-flow restriction (BFR) on subsequent forehand performance and muscle recruitment in tennis.

Methods: On separate visits, 12 well-trained tennis players participated in 4 randomized trials. Each visit included pretests (maximal muscle-activation capacity or FD performance), a preconditioning phase, and posttests after 5 minutes of rest (ie, similar to pretests).

View Article and Find Full Text PDF

Eight-week lat pull-down resistance training with joint instability leads to superior pull-up endurance performance and reduced antagonist coactivation in recreationally active male college students.

Eur J Sport Sci

January 2025

Sport and Health Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Physical Education Department, Tongji University, Shanghai, China.

This study aimed to investigate the effects of an 8-week lat pull-down resistance training program with joint instability on pull-up performance in male college students. Thirty-four healthy recreationally active male college students were randomly assigned to either the joint instability resistance training (IRT) or traditional resistance training (TRT) group. Participants of the TRT and IRT groups performed lat pull-down training on stable and joint instability conditions for 8 weeks, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!