Cellulose aerogels have great prospects for noise reduction applications due to their sustainable value and superior 3D interconnected porous structures. The drying principle is a crucial factor in the preparation process for developing high-performance aerogels, particularly with respect to achieving high acoustic absorption properties. In this study, multifunctional cellulose nanocrystal (CNC) aerogels were conveniently prepared using two distinct freeze-drying principles: refrigerator conventional freezing (RCF) and liquid nitrogen unidirectional freezing (LnUF). The results indicate that the rapid RCF process resulted in a denser CNC aerogel structure with disordered larger pores, causing a stronger compressive performance (Young's modulus of 40 kPa). On the contrary, the LnUF process constructed ordered structures of CNC aerogels with a lower bulk density (0.03 g/cm) and smaller apertures, resulting in better thermal stability, higher diffuse reflection across visible light, and especially increased acoustic absorption performance at low-mid frequencies (600-3000 Hz). Moreover, the dissipation mechanism of sound energy in the fabricated CNC aerogels is predicted by a designed porous media model. This work not only paves the way for optimizing the performance of aerogels through structure control, but also provides a new perspective for developing sustainable and efficient acoustic absorptive materials for a wide range of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888388PMC
http://dx.doi.org/10.3390/gels10020141DOI Listing

Publication Analysis

Top Keywords

acoustic absorption
12
cnc aerogels
12
absorption performance
8
cellulose nanocrystal
8
aerogels
7
effects freeze-drying
4
freeze-drying processes
4
acoustic
4
processes acoustic
4
performance
4

Similar Publications

Influence of Periodically Varying Slit Widths on Sound Absorption by a Slit Pore Medium.

Materials (Basel)

December 2024

School of Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, UK.

A simple pore microstructure of parallel, identical, and inclined smooth-walled slits in a rigid solid, for which prediction of its geometrical and acoustic properties is straightforward, can yield useful sound absorption. This microstructure should be relatively amenable to 3D printing. Discrepancies between measurements and predictions of normal incidence sound absorption spectra of 3D printed vertical and slanted slit pore samples have been attributed to the rough surfaces of the slit walls and uneven slit cross-sections perpendicular to the printing direction.

View Article and Find Full Text PDF

Deep proximal gradient network for absorption coefficient recovery in photoacoustic tomography.

Phys Med Biol

January 2025

North China Electric Power University - Baoding Campus, North China Electric Power University, Baoding, Hebei Province, P.R.China, Baoding, Hebei, 071003, CHINA.

Objective: The optical absorption properties of biological tissues in photoacoustic tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.

View Article and Find Full Text PDF

An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy.

View Article and Find Full Text PDF

Resolution Enhancement Strategies in Photoacoustic Microscopy: A Comprehensive Review.

Micromachines (Basel)

November 2024

Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Photoacoustic imaging has emerged as a promising modality for medical imaging since its introduction. Photoacoustic microscopy (PAM), which is based on the photoacoustic effect, combines the advantages of both optical and acoustic imaging modalities. PAM facilitates high-sensitivity, high-resolution, non-contact, and non-invasive imaging by employing optical absorption as its primary contrast mechanism.

View Article and Find Full Text PDF

Concrete, as the most widely used construction material globally, is prone to cracking under the influence of external factors such as mechanical loads, temperature fluctuations, chemical corrosion, and freeze-thaw cycles. Traditional concrete crack repair methods, such as epoxy resins and polymer mortars, often suffer from a limited permeability, poor compatibility with substrates, and insufficient long-term durability. Microbial biogrouting technology, leveraging microbial-induced calcium carbonate precipitation (MICP), has emerged as a promising alternative for crack sealing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!