Chronic wounds, commonly known as ulcers, represent a significant challenge to public health, impacting millions of individuals every year and imposing a significant financial burden on the global health system. Chronic wounds result from the interruption of the natural wound-healing process due to internal and/or external factors, resulting in slow or nonexistent recovery. Conventional medical approaches are often inadequate to deal with chronic wounds, necessitating the exploration of new methods to facilitate rapid and effective healing. In recent years, regenerative medicine and tissue engineering have emerged as promising avenues to encourage tissue regeneration. These approaches aim to achieve anatomical and functional restoration of the affected area through polymeric components, such as scaffolds or hydrogels. This review explores collagen-based biomaterials as potential therapeutic interventions for skin chronic wounds, specifically focusing on infective and diabetic ulcers. Hence, the different approaches described are classified on an action-mechanism basis. Understanding the issues preventing chronic wound healing and identifying effective therapeutic alternatives could indicate the best way to optimize therapeutic units and to promote more direct and efficient healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888252 | PMC |
http://dx.doi.org/10.3390/gels10020137 | DOI Listing |
Gac Med Mex
January 2025
Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, United Kingdom.
FRAX, a risk calculator that provides individualized 10-year probabilities of hip and major osteoporotic fracture, has been widely used for fracture risk assessment since its launch in 2008. It is now incorporated into very many guidelines worldwide to inform osteoporosis management. In this review, we explore the development of FRAX and how it enhances fracture risk prediction as compared to use of bone mineral density alone, as well as approaches to utilizing FRAX in determining intervention and assessment thresholds.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
Department of Orthopaedic Surgery, University of Utah Hospital, Salt Lake City, UT. Electronic address:
Purpose: Controversy exists regarding the optimal imaging modality (magnetic resonance imaging, ultrasound, stress radiographs) for identification of patients with grossly unstable thumb metacarpophalangeal (MCP) ulnar collateral ligament (UCL) injuries or Stener lesions. We characterize a radiographic sign for this purpose. The "displaced fleck sign" is a small avulsion fracture from the ulnar proximal phalanx base that is displaced proximal to the MCP joint line.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, P. R. China.
Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!