Three-dimensional (3D) neuronal cultures grown in hydrogels are promising platforms to design brain-like neuronal networks in vitro. However, the optimal properties of such cultures must be tuned to ensure a hydrogel matrix sufficiently porous to promote healthy development but also sufficiently rigid for structural support. Such an optimization is difficult since it implies the exploration of different hydrogel compositions and, at the same time, a functional analysis to validate neuronal culture viability. To advance in this quest, here we present a combination of a rheological protocol and a network-based functional analysis to investigate PEGylated fibrin hydrogel networks with gradually higher stiffness, achieved by increasing the concentration of thrombin. We observed that moderate thrombin concentrations of 10% and 25% in volume shaped healthy networks, although the functional traits depended on the hydrogel stiffness, which was much higher for the latter concentration. Thrombin concentrations of 65% or higher led to networks that did not survive. Our results illustrate the difficulties and limitations in preparing 3D neuronal networks, and stress the importance of combining a mechano-structural characterization of a biomaterial with a functional one.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888336 | PMC |
http://dx.doi.org/10.3390/gels10020116 | DOI Listing |
AAPS J
November 2024
Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Hippocrate 54, Bte B1.55.03, 1200, Brussels, Belgium.
The development of advanced preclinical models is crucial for the evaluation and validation of novel therapeutic strategies in oncology. Three-dimensional (3D) microtumor models, which incorporate both cancer and stromal cells within biomimetic hydrogels, have emerged as powerful tools that more accurately replicate the complex tumor microenvironment compared to traditional two-dimensional (2D) cell culture systems. In this context, our study aims to develop 3D microtumor models by integrating cancer and stromal cells within an extracellular-matrix-mimetic hydrogel, as a physiologically accurate microtumor model that can serve as an innovative platform for advanced cancer research and drug screening.
View Article and Find Full Text PDFLife Sci
October 2024
Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium. Electronic address:
Microtumor models, combining cancer and stromal cells within 3D hydrogels, are vital for testing anticancer therapies. Bioprinting hydrogel scaffolds allows tailored in vitro models. We created a 3D microtumor model using a bioprinter, with varying ratios of ovarian stromal cells and leukemia cells (HL-60).
View Article and Find Full Text PDFACS Omega
July 2024
Department of Radiology, UMASS Chan Medical School, Worcester, Massachusetts 01655, United States.
X-ray attenuating contrast agents for imaging thrombi directly during endovascular thrombectomy (EVT) are urgently needed for shortening the wait time for treatment and for reducing the chances of blood clot fragmentation. Neutrophil extracellular traps (NETs) are a product of an innate immune system response by which neutrophils release decondensed chromatin strands decorated with granule and cytosolic proteins, including neutrophil elastase and citrullinated histone H3 (CitH3). NETs are frequently found within fibrous thrombi in pathology and represent a promising target for thrombi-specific imaging agents due to their common occurrence in human cerebrovascular thrombi.
View Article and Find Full Text PDFBiomacromolecules
July 2024
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Despite great progress in the hydrogel hemostats and dressings, they generally lack resistant vascular bursting pressure and intrinsic bioactivity to meet arterial massive hemorrhage and proheal wounds. To address the problems, we design a kind of biomimetic and wound microenvironment-modulating PEGylated glycopolypeptide hydrogels that can be easily injected and gelled in ∼10 s. Those glycopolypeptide hydrogels have suitable tissue adhesion of ∼20 kPa, high resistant bursting pressure of ∼150 mmHg, large microporosity of ∼15 μm, and excellent biocompatibility with ∼1% hemolysis ratio and negligible inflammation.
View Article and Find Full Text PDFGels
February 2024
Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain.
Three-dimensional (3D) neuronal cultures grown in hydrogels are promising platforms to design brain-like neuronal networks in vitro. However, the optimal properties of such cultures must be tuned to ensure a hydrogel matrix sufficiently porous to promote healthy development but also sufficiently rigid for structural support. Such an optimization is difficult since it implies the exploration of different hydrogel compositions and, at the same time, a functional analysis to validate neuronal culture viability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!