Purpose: The purpose of this study was to establish a validated method, consistent with Eye Bank Association of America medical standards, for evaluating endothelial cell loss (ECL) from an entire Descemet membrane endothelial keratoplasty (DMEK) graft using trypan blue dye as an alternative to specular microscopy.
Method: Twenty-nine corneas were prepared for preloaded DMEK by a single technician, and the endothelium was stained with trypan blue dye for 30 seconds. The technician estimated total cell loss as a percentage of the graft and captured an image. Images were evaluated by a blinded technician using ImageJ software to determine ECL and compared with endothelial cell density from specular microscopy. Tissue processing intervals were analyzed for 4 months before and after implementation of this method.
Results: For the 29 grafts, there was no statistically significant difference ( t test, P = 0.285) between ECL estimated by a processor (mean = 5.8%) and ECL calculated using an ImageJ software (mean = 5.1%). The processor tended to estimate greater ECL than the actual ECL determined by ImageJ (paired t test, P = 0.022). Comparatively, postprocessing endothelial cell density measured by specular microscopy were higher compared with the preprocessing endothelial cell density (mean = 4.5% P = 0.0006). After implementation of this evaluation method, DMEK graft processing time intervals were reduced by 47.9% compared with specular microscopy evaluation ( P < 0.001).
Conclusions: Our results show that visual ECL estimation using trypan blue staining by a DMEK graft processor is a reliable and efficient method for endothelial assessment. Unlike specular microscopy, this method achieves comprehensive visualization of the entire endothelium, reduces total time out of cold storage, and decreases total time required to prepare and evaluate DMEK grafts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ICO.0000000000003514 | DOI Listing |
Food Sci Nutr
January 2025
Department of Chemistry, Thomas J. R. Faulkner College of Science and Technology University of Liberia Monrovia Montserrado County Liberia.
Citronellol (CT) is a naturally occurring lipophilic monoterpenoid which has shown anticancer effects in numerous cancerous cell lines. This study was, therefore, designed to examine CT's potential as an anticancer agent against glioblastoma (GBM). Network pharmacology analysis was employed to identify potential anticancer targets of CT.
View Article and Find Full Text PDFCornea
January 2025
Department of Pathology, Sentara Norfolk General Hospital, Norfolk, VA; and.
Purpose: To describe a technique involving combined endothelialectomy and trypan blue staining to allow for improved visualization and Descemet membrane (DM) removal during endothelial keratoplasty.
Methods: Endothelialectomy with 2 disposable endothelial irrigating cannulas (Vortex and Sterimedix) and an irrigation-aspiration handpiece are described. Several passes over the desired area are made to ensure adequate endothelialectomy treatment.
Biomedicines
December 2024
Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
Background/objectives: Glioblastoma (GBM) is the most aggressive type of brain tumor in adults. Currently, the only treatments available are surgery, radiotherapy, and chemotherapy based on temozolomide (TMZ); however, the prognosis is dismal. Several natural substances are under investigation for cancer treatment.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Institute for Safflower Industry Research / Pharmacy School of Shihezi University, Shihezi, 832003, China. Electronic address:
Moderate UV-B promotes plant growth, but excessive UV-B inhibits plant development. The induction mechanism of how CtWD40-6 responds to UV-B is still unclear in safflower. Our results showed that CtWD40-6 is expressed at the top of safflower leaves and is strongly induced by UV-B.
View Article and Find Full Text PDFNutr Neurosci
January 2025
Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!