Triclosan (TCS), a broad-spectrum antibacterial chemical, is detected in human urine, breast milk, amniotic fluid, and feces; however, little is known about its impact on the intestinal microbiome and host mucosal immunity during pregnancy and early development. Pregnant female rats were orally gavaged with TCS from gestation day (GD) 6 to postpartum (PP) day 28. Offspring were administered TCS from postnatal day (PND) 12 to 28. Studies were conducted to assess changes in the intestinal microbial population (16S-rRNA sequencing) and functional analysis of microbial genes in animals exposed to TCS during pregnancy (GD18), and at PP7, PP28 and PND28. Microbial abundance was compared with the amounts of TCS excreted in feces and IgA levels in feces. The results reveal that TCS decreases the abundance of and with a significant increase in . At PND28, total Operational Taxonomic Units (OTUs) were higher in females and showed correlation with the levels of TCS and unbound IgA in feces. The significant increase in in all TCS-treated rats along with the increased abundance in OTUs that belong to pathogenic bacterial communities could serve as a signature of TCS-induced dysbiosis. In conclusion, TCS can perturb the microbiome, the functional activities of the microbiome, and activate mucosal immunity during pregnancy and early development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885032PMC
http://dx.doi.org/10.3390/jox14010012DOI Listing

Publication Analysis

Top Keywords

functional activities
8
tcs
8
mucosal immunity
8
immunity pregnancy
8
pregnancy early
8
early development
8
early developmental
4
developmental exposure
4
exposure triclosan
4
triclosan impacts
4

Similar Publications

Objectives: Patients are often discharged to a skilled nursing facility (SNF) for postacute rehabilitation. Functional outcomes achieved in SNFs are variable, and costs are high. Especially for accountable care organizations (ACOs), home-based postacute rehabilitation offers a high-value option if outcomes are not compromised.

View Article and Find Full Text PDF

Unraveling the Role of Functional Groups of Terephthalate in Enhancing the Electrochemical Oxygen Evolution Reaction of Nickel-Organic Framework Nanoarrays.

Inorg Chem

January 2025

Jiangxi Province Key Laboratory of Functional Organic Polymer, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013 Jiangxi, P. R. China.

The platelike nickel-terephthalate-type metal-organic framework nanoarrays (Ni-BDC NAs) on carbon cloth are obtained by employing agaric-like Ni(OH) NAs as sacrificial templates. The microenvironment of Ni-BDC NAs is modulated by various neighboring functional groups (-NH, -NO, and -Br) on the carboxylate ligand, exerting minimal destructive effects on the structure and morphology of Ni-BDC NAs. The electrochemical oxygen evolution reaction (OER) of Ni-BDC-NH NAs, Ni-BDC-NO NAs, and Ni-BDC-Br NAs exhibited a significant enhancement compared to that of Ni-BDC NAs alone, as evidenced by both experimental and theoretical assessments.

View Article and Find Full Text PDF

Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.

View Article and Find Full Text PDF

NMDA receptor ligands have therapeutic potential in neurological and psychiatric disorders. We designed ()-3-(5-thienyl)carboxamido-2-aminopropanoic acid derivatives with nanomolar agonist potencies at NMDA receptor subtypes (GluN12/A-D). These compounds are superagonists at GluN1/2C compared to glycine and partial to full agonists at GluN1/2A and GluN1/2D but display functional antagonism at GluN1/2B due to low agonist efficacy.

View Article and Find Full Text PDF

Expanding the brain's terrain for reward.

Science

January 2025

Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.

A previously unknown region in the brainstem controls dopamine activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!