Motivation: A patient's disease phenotype can be driven and determined by specific groups of cells whose marker genes are either unknown or can only be detected at late-stage using conventional bulk assays such as RNA-Seq technology. Recent advances in single-cell RNA sequencing (scRNA-seq) enable gene expression profiling in cell-level resolution, and therefore have the potential to identify those cells driving the disease phenotype even while the number of these cells is small. However, most existing methods rely heavily on accurate cell type detection, and the number of available annotated samples is usually too small for training deep learning predictive models.
Results: Here, we propose the method ScRAT for phenotype prediction using scRNA-seq data. To train ScRAT with a limited number of samples of different phenotypes, such as coronavirus disease (COVID) and non-COVID, ScRAT first applies a mixup module to increase the number of training samples. A multi-head attention mechanism is employed to learn the most informative cells for each phenotype without relying on a given cell type annotation. Using three public COVID datasets, we show that ScRAT outperforms other phenotype prediction methods. The performance edge of ScRAT over its competitors increases as the number of training samples decreases, indicating the efficacy of our sample mixup. Critical cell types detected based on high-attention cells also support novel findings in the original papers and the recent literature. This suggests that ScRAT overcomes the challenge of missing marker genes and limited sample number with great potential revealing novel molecular mechanisms and/or therapies.
Availability And Implementation: The code of our proposed method ScRAT is published at https://github.com/yuzhenmao/ScRAT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902676 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae067 | DOI Listing |
Curr Cardiol Rep
January 2025
Division of Internal Medicine, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, University of Milan, Piazzale Principessa Clotilde, 3, Milan, 20121, Italy.
Purpose Of Review: To outline the latest discoveries regarding the utility and reliability of serum biomarkers in idiopathic recurrent acute pericarditis (IRAP), considering recent findings on its pathogenesis. The study highlights the predictive role of these biomarkers in potential short- (cardiac tamponade, recurrences) and long-term complications (constrictive pericarditis, death).
Recent Findings: The pathogenesis of pericarditis has been better defined in recent years, focusing on the autoinflammatory pathway.
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France.
Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
Aim: Proteinuria is the most robust predictive factors for the progression of chronic kidney disease (CKD), and interventions targeting proteinuria reduction have shown to be the most effective nephroprotective treatments to date. While glomerular dysfunction is the primary source of proteinuria, its consequences extend beyond the glomerulus and have a profound impact on tubular epithelial cells. Indeed, proteinuria induces notable phenotypic changes in tubular epithelial cells and plays a crucial role in driving CKD progression.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
Background: Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC.
Methods: The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!